Skip to main content
Log in

Evidence for a noradrenergic mechanism in the grooming produced by (+)-amphetamine and 4,α-dimethyl-m-tyramine (H 77/77) in rats

  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rats were kept on a 12-h light-dark cycle. One hour after the light was switched on, physiological saline, (+)-amphetamine 1 mg/kg, and H 77/77 5 mg/kg were injected s.c.; the number of groomings was counted 1–2h after the treatments. (+)-Amphetamine and H 77/77 produced increased grooming which was antagonized by the tyrosine hydroxylase inhibitor H 44/68 (250 mg/kg), the dopamine-β-hydroxylase inhibitor FLA 63 (40), the neuroleptics haloperidol (0.1 and 0.5), and clozapine (1 and 5). The (+)-amphetamine-induced grooming was also antagonized by the NA-receptor blocker aceperone (10) but not by the sedative phenothiazines mepazine (10) and diphenhydramine (20) nor diazepam (1).

These results indicate that NA-release is involved in the mediation of (+)-amphetamine- and H 77/77-induced grooming. The inhibition of haloperidol and clozapine is presumably due to NA-receptor blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K.: Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamine-β-hydroxylase inhibitors. J. Pharm. Pharmacol. 24, 177–182 (1972)

    Google Scholar 

  • Angst, J., Jäenicke, U., Padrutt, A., Scharfetter, Ch.: Ergebnisse eines Doppelblindversuches von HF 1854[8-Chlor-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)]1,4(diazepin) im Vergleich zu Levopromazin. Pharmakopsychiatr. 4, 192–200 (1971)

    Google Scholar 

  • Angst, J., Bente, D., Berner, P., Heimann, H., Helmchen, H., Hippius, H.: Das klinische Wirkungsbild von Clozapin. Pharmakopsychiatr. 4, 201–211 (1971)

    Google Scholar 

  • Berridge, T. L., Sharman, D. F.: The effect of tranquillizing drugs on the concentration of the sulphate ester of 4-hydroxy-3-methoxyphenylethane-1,2-Diol in rat brain. Br. J. Pharmacol. 50, 156–158 (1974)

    Google Scholar 

  • Bindra, D., Blond, J.: A time-sample method for measuring general activity and its components. Can. J. Psychol. 12, 74–76 (1958)

    Google Scholar 

  • Bolles, R. C.: Grooming behavior in the rat. J. Comp. Physiol. Psychol. 53, 306–310 (1960)

    Google Scholar 

  • Borbély, A. A., Huston, J. P., Waser, P. G.: Physiological and behavioral effects of parachlorophenylalanine in the rat. Psychopharmacologia (Berl.) 31, 131–142 (1973)

    Google Scholar 

  • Bræstrup, C., Nielsen, M.: Regulation in the central norepinephrine neurotransmission induced in vivo by alpha adrenoceptor active drugs. J. Pharmacol. Exp. Ther. 198, 596–608 (1976)

    Google Scholar 

  • Bürki, H. R., Eichenberger, E., Sayers, A. C., White, T. C.: Clozapine and the dopamine hypothesis of schizophrenia, a critical appraisal. Pharmakopsychiatr. 8, 115–121 (1975)

    Google Scholar 

  • Buus Lassen, J.: Evidence for a noradrenergic and dopaminergic mechanism in the hyperactivity produced by 4,α-dimethyl-m-tyramine (H 77/77) in rats. Psychopharmacologia (Berl.) 37, 331–340 (1974)

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. (Kbh.) 20, 140–144 (1963)

    Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Eur. J. Pharmacol. 5, 367–373 (1969)

    Google Scholar 

  • Carlsson, A., Lindqvist, M., Wysokowski, J.: Substituted metatyramines as brain monoamine depletors. Acta Pharm. Suec. 7, 293–302 (1970)

    Google Scholar 

  • Corrodi, H., Fuxe, K., Ljungdahl, Å., Ögren, S.-O.: Studies on the action of some psychoactive drugs on central noradrenaline neurones after inhibition of dopamine-β-hydroxylase. Brain Res. 24, 451–470 (1970)

    Google Scholar 

  • Dingell, J. V., Owens, M. L., Norvich, M. R., Sulser, F.: On the role of norepinephrine biosynthesis in the central action of amphetamine. Life Sci. 6, 1155–1162 (1967)

    Google Scholar 

  • Dominic, J. A., Moore, K. E.: Acute effects of α-methyl-tyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice. Arch. Int. Pharmacodyn. 178, 166–176 (1969)

    Google Scholar 

  • von Gross, H., Langner, E.: Das Wirkungsprofil eines chemisch neuartigen Breitbandneuroleptikums der Dibenzodiazepingruppe. Wien. Med. Wochenschr. 40, 814–816 (1966)

    Google Scholar 

  • von Gross, H., Langner, E.: Das Neuroleptikum 100-129/HF-1854 (Clozapin) in der Psychiatrie. Int. Pharmacopsychiatry 4, 220–230 (1970)

    Google Scholar 

  • Hanselmann, G., Borbély, A. A.: Response of rat brain indoles and motor activity to short light dark cycles. J. Neurochem. 26, 951–955 (1976)

    Google Scholar 

  • Hansson, L. C. F.: Evidence that the central action of (+)-amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.) 10, 289–297 (1967)

    Google Scholar 

  • Hyttel, J.: Effect of neuroleptics on the disappearance rate of (14C) labelled catecholamines formed from (14C) tyrosine in mouse brain. J. Pharm. Pharmacol. 26, 588–596 (1974)

    Google Scholar 

  • Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Arzneim. Forsch. 15, 104–125 (1965)

    Google Scholar 

  • Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L., Lenaerts, F. M.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Arzneim. Forsch. 17, 841–843 (1967)

    Google Scholar 

  • Jonas, W., Scheel-Krüger, J.: Amphetamine induced stereotyped behavior correlated with the accumulation of O-methylated dopamine. Arch. Int. Pharmacodyn. 177, 379–389 (1969)

    Google Scholar 

  • O'Keeffe, R., Sharman, O. F., Vogt, M.: Effects of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)

    Google Scholar 

  • Keller, H. H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmacol. 23, 183–186 (1973)

    Google Scholar 

  • Kurland, A.-A., Hanlon, T. E., Tatom, M. H., Ota, K. Y., Simopoulos, A. M.: The comparative effectiveness of six phenothiazine compounds, phenobarbital and inert placebo in the treatment of acutely ill patients: global measures of severity of illness. J. Nerv. Ment. Dis. 133, 1–18 (1961)

    Google Scholar 

  • Leonard, B. E., Shallice, S. A.: Some neurochemical effects of amphetamine, methylamphetamine and p-bromomethylamphetamine in the rat. Br. J. Pharmacol. 41, 198–212 (1971)

    Google Scholar 

  • DiMascio, A., Havens, L. L., Snell, J. E.: A comparison of four phenothiazine derivatives: a preliminary report on the assessment of chlorpromazine, promethazine, perphenazine, and trifluoperazine. In: Recent advances in biological psychiatry, Vol. III, J. Wortis, ed. New York: Grune and Stratton 1961

    Google Scholar 

  • Meek, J. L., Neff, N. H.: The rate of formation of 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in brain as an estimate of the rate of formation of norepinephrine. J. Pharmacol. Exp. Ther. 184, 570–575 (1973)

    Google Scholar 

  • Munkvad, I., Pakkenberg, H., Randrup, A.: Aminergic systems in basal ganglia associated with stereotyped hyperactivity behavior and catalepsy. Brain Behav. Evol. 1, 89–100 (1968)

    Google Scholar 

  • Nielsen, M.: Estimation of noradrenaline and its major metabolites synthesized from (3H)tyrosine in the rat brain. J. Neurochem. 27, 493–500 (1976)

    Google Scholar 

  • Nybäck, H.: Effects of neuroleptic drugs on brain catecholamine neurons. Stockholm: Karolinska Institutet (akad. avhandl.) (1971)

    Google Scholar 

  • Peacock, I. J., Hodge, M. H., Thomas, R. K.: Ultrasonic measurement and automatic analysis of general activity in the rat. J. Comp. Physiol. Psychol. 62, 284–288 (1966)

    Google Scholar 

  • Randrup, A., Munkvad, I., Udsen, P.: Adrenergic mechanisms and amphetamine induced abnormal behaviour. Acta Pharmacol. (Kbh.) 20, 145–157 (1963)

    Google Scholar 

  • Randrup, A., Munkvad, J.: Role of catecholamines in the amphetamine excitatory response. Nature (Lond.) 211, 540 (1966)

    Google Scholar 

  • Randrup, A., Munkvad, I.: Pharmacology and physiology of stereotyped behavior. J. Psychiatr. Res. 11, 1–10 (1974)

    Google Scholar 

  • Scheel-Krüger, J.: Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Eur. J. Pharmacol. 14, 47–59 (1971)

    Google Scholar 

  • Scheel-Krüger, J.: Studies on the accumulation of O-methylated dopamine and noradrenaline in the rat brain following various neuroleptics, thymoleptics and aceperone. Arch. Int. Pharmacodyn. 195, 372–378 (1972)

    Google Scholar 

  • Schiørring, E.: Amphetamine induced selective stimulation of certain behaviour items with concurrent inhibition of others in an open-field test with rats. Behaviour 39, 1–17 (1971)

    Google Scholar 

  • Sedvall, G., Nybäck, H.: Effect of clozapine and some other antipsychotic agents on synthesis and turnover of dopamine formed from 14C-tyrosine in mouse brain. Isr. J. Med. Sci. [Suppl.] 9, 24–30 (1973)

    Google Scholar 

  • Sparber, S. B., Tilson, T. A.: The releasability of central norepinephrine and serotonin by peripherally administered d-amphetamine before and after tolerance. Life Sci. 11, Pt. 1, 1059–1067 (1972)

    Google Scholar 

  • Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b.e.)(1,4)diazepine (clozapine) Farmaco [Part.] 26, 603–625 (1971)

    Google Scholar 

  • Svensson, T. H., Waldeck, B.: On the significance of central noradrenaline for motor activity: experiments with a new dopamine β-hydroxylase inhibitor. Eur. J. Pharmacol. 7, 278–282 (1969)

    Google Scholar 

  • Weissmann, A., Koe, B. K., Tenen, S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 151, 339–352 (1966)

    Google Scholar 

  • Zucker, I.: Light-dark rhythms in rat eating and drinking behavior. Physiol. Behav. 6, 115–126 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buus Lassen, J. Evidence for a noradrenergic mechanism in the grooming produced by (+)-amphetamine and 4,α-dimethyl-m-tyramine (H 77/77) in rats. Psychopharmacology 54, 153–157 (1977). https://doi.org/10.1007/BF00426772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00426772

Key words

Navigation