Skip to main content
Log in

Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chlorobium limicola has been proposed to assimilate CO2 autotrophically via a reductive tricarboxylic acid cycle rather than via the Calvin cycle. This proposal has been a matter of considerable controversy. In order to determine which pathway is operative, the bacterium was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C-pyruvate, and the incorporation of 14C into alanine (≙intracellular pyruvate), aspartate (≙oxaloacetate), glutamate (≙α-ketoglutarate), and glucose (≙hexosephosphate) was measured in exponentially growing cells in long term labeling experiments. During growth in presence of pyruvate, 20% of the cell carbon were derived from pyruvate in the medium, 80% from CO2. Since pyruvate was not oxidized to CO2, only those compounds should become labeled which were synthesized from CO2 via pyruvate.

The three amino acids and glucose were found to be labeled. Alanine had one fifth the specific radioactivity of the extracellular pyruvate, indicating that 20% of the intracellular pyruvate pool were derived from pyruvate in the medium, 80% were synthesized from CO2. Glucose had twice the specific radioactivity of alanine, showing that hexosephosphate synthesis from CO2 proceeded via the pyruvate pool. The latter finding is not consistent with the operation of the Calvin cycle, in which pyruvate is not an intermediate. The specific radioactivities of aspartate (≙oxaloacetate) and of glutamate (≙α-ketoglutarate) were practically identical but considerably lower than that of alanine (≙ intracellular pyruvate). These findings are compatible with the operation of a reductive tricarboxylic acid cycle as mechanism of autotrophic CO2 fixation. Degradation studies of the cell components support this interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bergmeyer, H.-U., Bernt, E.: Bestimmung mit Glucose-Oxidase und Peroxidase. In: Methoden der enzymatischen Analyse, Vol. 2 (H.-U. Bergmeyer, ed.), pp. 1172–1181. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Beuscher, N., Gottschalk, G.: Lack of citrate lyase — the key enzyme of the reductive carboxylic acid cycle — in Chlorobium thiosulfatophilum and Rhodospirillum rubrum. Z. Naturforsch. 27b, 967–973 (1972)

    Google Scholar 

  • Buchanan, B. B.: Ferredoxin and carbon assimilation. In: Iron-sulfur proteins, Vol. 1 (W. Lowenberg, ed.), pp. 129–150, New York, London: Academic Press 1973

    Google Scholar 

  • Buchanan, B. B., Evans, M. C. W.: The synthesis of α-ketoglutarate from succinate and carbon dioxide by subcellular preparation of a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 54, 1212–1218 (1965)

    Google Scholar 

  • Buchanan, B. B., Schürmann, P., Shanmugam,K. T.: Role of the reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose-1,5-bisphosphate carboxylase. Biochim. Biophys. Acta 283, 136–145 (1972)

    Google Scholar 

  • Buchanan, B. B., Sirevåg, R.: Ribulose-1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum. Arch. Microbiol. 109, 15–19 (1976)

    Google Scholar 

  • Evans, M. C. W., Buchanan, B. B.: Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 53, 1420–1425 (1965)

    Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928–934 (1966)

    Google Scholar 

  • Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61–66 (1978)

    Google Scholar 

  • Fuchs, G., Stupperich, E., Eden, G.: Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. 128, 64–71 (1980)

    Google Scholar 

  • Gottschalk, G.: The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur. J. Biochem. 5, 346–351 (1968)

    Google Scholar 

  • Grassl, M.: Alaninbestimmung mit Glutamat-Pyruvat-Transaminase and Lactat-Dehydrogenase. In: Methoden der enzymatischen Analyse, Vol. 2 (H.-U. Bergmeyer, ed.), pp. 1637–1640, Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Hoare, D. S., Gibson, J.: Photoassimilation of acetate and the biosynthesis of amino acids by Chlorobium thiosulfatophilum. Biochem. J. 91, 546–559 (1964)

    Google Scholar 

  • Hohorst, H.-J.: l-(+)-Lactat-Bestimmung mit Lactat-Dehydro-genase und NAD. In: Methoden der enzymatischen Analyse, Vol. 2 (H.-U. Bergmeyer, ed.), pp. 1425–1429. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Larsen, H.: Photosynthesis of succinic acid by Chlorobium thiosulfatophilum. J. Biol. Chem. 193, 167–173 (1951)

    Google Scholar 

  • Larsen, H.: On the culture and general physiology of the green sulfur bacteria. J. Bacteriol. 64, 187–196 (1952)

    Google Scholar 

  • Pfennig, N., Trüper, H. G.: The phototrophic bacteria. In: Bergey's manual of determinative bacteriology, eighth edition (R. E. Buchanan, N. E. Gibbons, eds.), pp. 24–64. Baltimore: Williams and Wilkins Co. 1974

    Google Scholar 

  • Quandt, L.: Untersuchung der CO2-Fixierung und des Wasserstoff-Stoffwechsels in Chlorobium. Thesis, University of Göttingen (1978)

  • Quandt, L., Gottschalk, G., Ziegler, H., Stichler, W.: Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Letters 1, 125–128 (1977)

    Google Scholar 

  • Quayle, J. R., Ferenci, T.: Evolutionary aspects of autotrophy. Microbiol. Rev. 42, 251–273 (1978)

    Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britton, R. J.: Studies of biosynthesis in Escherichia coli. Carnegie Institute, Washington 1957

    Google Scholar 

  • Sadler, W. R., Stanier, R. Y.: The function of acetate in photosynthesis by green bacteria. Proc. Natl. Acad. Sci. USA 46, 1328–1334 (1960)

    Google Scholar 

  • Simon, H., Floss, H. G.: Anwendung von Isotopen in der organischen Chemie und Biochemie, Vol. 2, pp. 23ff., 50ff. Berlin. Heidelberg, New York: Springer 1967

    Google Scholar 

  • Sirevåg, R.: Further studies on carbon dioxide fixation in Chlorobium. Arch. Microbiol. 98, 3–18 (1974)

    Google Scholar 

  • Sirevåg, R.: Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum. Arch. Microbiol. 104, 105–111 (1975)

    Google Scholar 

  • Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in green sulfur bacteria. Biochem. J. 120, 399–408 (1970a)

    Google Scholar 

  • Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in photosynthetic green sulfur bacteria. Science 169, 186–188 (1970b)

    Google Scholar 

  • Sirevåg, R., Buchanan, B. B., Berry, J. A., Troughton, J. H.: Mechanism of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38 (1977)

    Google Scholar 

  • Smillie, R. M., Rigopoulos, N., Kelly, H.: Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. Biochim. Biophys. Acta 56, 612–614 (1962)

    Google Scholar 

  • Srere, P. A.: The citrate enzymes: Their structures, mechanisms and biological functions. In: Current topics in cellular regulation, Vol. 5 (B. L. Horecker, E. R. Stadtman, eds.), pp. 229–283, New York: Academic Press 1972

    Google Scholar 

  • Stegemann, H.: Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seylers Z. Physiol. Chem. 319, 102–109 (1960)

    Google Scholar 

  • Tabita, F. R., McFadden, B. A., Pfennig, N.: d-Ribulose-1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. Biochim. Biophys. Acta 341, 187–194 (1974)

    Google Scholar 

  • Van Niel, C. B.: On the morphology and physiology of the purple and green sulfur bacteria. Arch. Microbiol. 3, 1–112 (1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: G. Fuchs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Stupperich, E. & Jaenchen, R. Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch. Microbiol. 128, 56–63 (1980). https://doi.org/10.1007/BF00422306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422306

Key words

Navigation