Skip to main content
Log in

Applications of modelling for bioprocess design and control in industrial production

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The on-line measurement of the relevant parameters and the control conception for three production processes for fine chemicals by fermentation and biotransformation at the 15 m3 scale were developed. The models describe the bioprocesses which successfully result in fully automated manufacturing steps. Modelling also proved to be a valuable tool for a better insight into biochemical fundamentals of the processes. Moreover, proper use of data logging, modelling and process control was important for quality, since two processes were controlled on-line and quality relevant deviations were registered early. Finally, combining modelling with simulation, we could drastically reduce both development time and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F l/h:

flux

V l:

volume

U 0 g/l:

nicotinonitrile concentration influx

U g/l:

actual nicotinonitrile concentration

q ug/gh:

specific educt (=nicotinonitrile) transformation rate

x g/l:

biocatalyst concentration

p 0 g/l:

nicotinamide concentration influx

p g/l:

actual nicotinamide concentration

q pg/gh:

specific product (=nicotinamide) formation rate

k :

parameter loss of activity

q u, maxg/gh:

max. specific educt transformation rate

K ug/l:

saturation constant for nicotinonitrile

K ig/l:

inhibition constant for nicotinonitrile

K iig/l:

inhibition constant for nicotinamide

MW Ag/mol:

molecular weight for nicotinonitrile

MW Bg/mol:

molecular weight for nicotinamide

NS :

Nicotinic acid

6-HNS:

6-Hydroxynicotinic acid

r NS, 6HNS g/lh:

6-HNS production rate

r 6HNS, X g/lh:

biomass production rate

r NS, 6HNS, max g/lh:

max. 6-HNS production rate

S NS g/l:

actual NS concentration

K S, NS g/l:

saturation constant for NS

K i, 6HNS g/l:

inhibition constant for 6-HNS

K o2 g/l:

saturation constant for oxygen

r 6HNS, X, max g/lh:

max. biomass production rate

S 6HNS g/l:

actual 6-HNS concentration

K ii, NS g/l:

inhibition constant for NS

RQ mol/mol:

respiration quotient

S xylg/l:

actual xylene concentration

K i, xylg/:

inhibition constant for xylene

K i, DMPYg/:

inhibition constant for 2,5-dimethylpyrazine

r Xg/lh:

biomass production rate

r X, maxg/lh:

max. biomass production rate

K s, xylg/l:

saturation constant for xylene

S DMPYg/l:

actual concentration of DMPY

K i, MPCAg/:

inhibition constant for MPCA

K O2g/:

saturation constant for oxygen

S MPCAg/l:

actual MPCA concentration

S O2g/l:

actual oxygen concentration

r MPCAg/lh:

MPCA production rate

r MPCA, maxg/lh:

max. MPCA production rate

k lgl:

inhibition constant for the intermediates

k s, DMPYgl:

saturation constant for DMPY

References

  1. Sonnleitner, B.; Käppeli, O.: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol. Bioeng. 26 (1986) 927–937

    Google Scholar 

  2. Sonnleitner, B.; Fiechter, A.: A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. II. Experimental verification. J. Biotechnol. 9 (1989) 191–208

    Google Scholar 

  3. Luyben, K.: Engineering aspect of bioconversion processes. Oral presentation, Bioreactor Engineering Course EFB working party, Island of Albarella, Italy (1992)

  4. Scheer, A.W.: Die Zunkunft von CIM. CIM 3 (1993) 31–33

    Google Scholar 

  5. Meyer, H.-P.: Fine chemicals from research to production. Chimia 47 (1993) 123–126

    Google Scholar 

  6. Rohner, M.; Meyer, H.-P.: Bioproduction of fine chemicals in the organic chemistry: Integral approaches by using highly automated process control strategies. Poster and oral presentation Bioreactor Engineering Course, EFB working party, Island of Albarella, Italy (1992)

  7. Kulla, H.; Lehky, P.: Verfahren zur Herstellung von 6-Hydroxynicotinsäure. Europäische Patentschrift, Veröffentlichungsnummer 0 152 949 B1 (1991)

  8. Kiener, A.: Enzymatische Oxidationen von Methylgruppen an Heteroaromen: Eine vielseitige Methode zur Herstellung von Carbonsäuren. Angew. Chem. 104 (1992) 748–749

    Google Scholar 

  9. Kiener, A.: Mikrobiologische Oxidation von Methylgruppen in Heterozyklen. Europäische Patentanmeldung EPA 442 430 (1991)

  10. Ashina, Y.; Suto, M.: Development of an Enzymatic Process for Manufacturing Acrylamide and Recent Progress. In: Industrial application of immobilized biocatalysts, Ed. by Tanaka A., Tosa T., Kobayashi T., pp. 91–107. New York: Marcel Dekker (1993)

    Google Scholar 

  11. Nagasawa, T.; Shimizu, H.; Yamada, H.: The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamdie. Appl. Microbiol. Biotechnol. 40 (1993) 189–195

    Google Scholar 

  12. Yamada, H.: Process for biological production of amides. European patent 0 307 926 A2 (1988)

  13. Hoeks, F.J.W.M.M.; Meyer, H.-P.; Quarroz, D.; Helwig, M.; Lehky, P.:: Scale-up of the process for the biotransformation of nicotinic acid into 6-hydroxynicotinic acid. GVC/DECHEMA Tagung “Massstabsvergrösserung in der Biotechnik”, Lüneburg (1991)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohner, M., Meyer, H.P. Applications of modelling for bioprocess design and control in industrial production. Bioprocess Engineering 13, 69–78 (1995). https://doi.org/10.1007/BF00420432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420432

Keywords

Navigation