Skip to main content
Log in

A region in the yeast genome which favours multiple integration of DNA via homologous recombination

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Integrative transformation of yeast with gapped DNA fragments results in single or multiple integration into the yeast genome via homologous recombination. A sequence of yeast DNA was found which favours multiple integration even when the strategy of gene replacement is used. This strategy by which the transformed DNA fragment replaces its chromosomal homologue rather than simply integrating into the genome usually occurs as a single exchange event. The described region is unique and lies ear a telomere about 5 kb proximal to the SUC4 locus on chromosome XIII. DNA from this region was used as a vehicle for the integration of different SUC genes coding for invertase. Most of the sucrose fermenting transformants isolated carried between two and seven copies of the SUC genes. These transformants overproduced invertase even though there was no selective pressure for high invertase activity in these experiments. I conclude that this region is highly recombinogenic and favours multiple integration of DNA fragments. This region could be used for stable multiple integration of heterologous genes into the yeast genome for over-production of the respective gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beggs JD (1978) Nature 275:447–452

    Google Scholar 

  • Beggs JD (1981) Alfred Benzon Symp 16:383–390

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3018–3025

    Google Scholar 

  • Birnboim HC (1983) Methods Enzymol 100:243–255

    Google Scholar 

  • Bitter GA, Chen KK, Banks AR, Lai DH (1984) Proc Natl Acad Sci USA 81:5330–5334

    Google Scholar 

  • Blackburn EH, Szostak JW (1984) Ann Rev Biochem 53:163–194

    Google Scholar 

  • Bolivar F, Backman K (1979) Methods Enzymol 68:245–267

    Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stichcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Bull JH, Wootton JC (1984) Nature 310:701–704

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28:145–154

    Google Scholar 

  • Carlson M, Botstein D (1983) Mol Cell Biol 3:351–359

    Google Scholar 

  • Carlson M, Celenza J, Eng FJ (1985) Mol Cell Biol 5:2894–2902

    Google Scholar 

  • Chan CSM, Tye BK (1983) Cell 33:563–573

    Google Scholar 

  • Chen CY, Hitzeman RA (1987) Nucleic Acids Res 15:643–660

    Google Scholar 

  • Fogel S, Welch JW (1982) Genetics 79:5342–5346

    Google Scholar 

  • Futcher AB, Cox BS (1984) J Bacteriol 157:283–290

    Google Scholar 

  • Goldstein A, Lampen JO (1975) Methods Enzymol 42: 504–511

    Google Scholar 

  • Grossmann MK, Zimmermann FK (1979) Mol Gen Genet 175: 223–229

    Google Scholar 

  • Hinnen A, Meyhack B (1982) Curr Top Microbiol Immunol 96: 101–117

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hitzeman RA, Clarke L, Carbon J (1980) J Biol Chem 255: 12073–12080

    Google Scholar 

  • Hitzeman RA, Leung DW, Perry JL, Kohr WJ, Levine HL, Goeddel DV (1983a) Science 219:620–625

    Google Scholar 

  • Hitzeman RA, Chen CY, Hagie FE, Patzer EJ, Liu CC, Estell DE, Miller JV, Yaffe A, Kleid DG, Levinson AD, Oppermann H (1983b) Nucleic Acids Res 11:2745–2762

    Google Scholar 

  • Hohmann S, Zimmermann FK (1986) Curr Genet 11:217–225

    Google Scholar 

  • Hohman S, Zimmermann FK (1986) Curr Genet 11: 217–225

    Google Scholar 

  • Kelly JM, Hynes MJ (1987) Curr Genet 12:21–31

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–77

    Google Scholar 

  • Murray AW, Szostak JW (1983) Nature 305:189–193

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Mol Cell Biol 3:747–749

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Parent SA, Fenimore CM, Bostian KA (1985) Yeast 1:83–138

    Google Scholar 

  • Rigby PW, Dieckman M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Sharp PM, Tuohy TMF, Mosurski KR (1986) Nucleic Acids Res 14:5125–5143

    Google Scholar 

  • Smith RA, Duncan MJ, Moir DT (1985) Science 229:1219–1224

    Google Scholar 

  • Stewart GG (ed) (1987) Biological research on industrial yeast, vol 2, fundamental aspects. CRC Press

  • Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1979) Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Tautz D, Renz M (1983) Anal Biochem 132:14–19

    Google Scholar 

  • Thim L, Hansen MT, Norris K, Hoegh J, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Proc Natl Acad Sci USA 83: 6766–6770

    Google Scholar 

  • Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Nature 298:347–350

    Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

  • Wernars K, Goosen T, Wennekes LMJ, Visser J, Bos CJ, van den Broek HWJ, van Gorcom RFM, van den Hondel CAMJJ, Pouwels PH (1985) Curr Genet 9:361–368

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

  • Zhu J, Contreras R, Fiers W (1986) Gene 50:225–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohmann, S. A region in the yeast genome which favours multiple integration of DNA via homologous recombination. Curr Genet 12, 519–526 (1987). https://doi.org/10.1007/BF00419561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419561

Key words

Navigation