Skip to main content
Log in

Cytochrome b-559 genes from Oenothera hookeri and Nicotiana tabacum show a remarkably high degree of conservation as compared to spinach

The enigma of cytochrome b-559: highly conserved genes and proteins but no known function

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Recent data suggest that cytochrome b-559, an intrinsic membrane protein of the oxygen-evolving photosystem II in chloroplasts, is a heme cross-linked heteromeric polypeptide unit (Herrmann et al. 1984, FEBS Lett 176:239–244). The genes for this cytochrome, designated psbE and psbF, have been located on the chloroplast chromosome of Oenothera hookeri and Nicotiana tabacum by hybridization with fragments of the corresponding spinach genes, and characterized. In both cases, the nucleotide sequence discloses 2 uninterrupted reading frames of 83 and 39 codons separated by a few nucleotides, as in spinach. The amber translation stop codon of psbE overlaps the putative ribosome-binding site for psbF in all cases. The predicted molecular weights of the proteins are 9.2 and 4.3 kd, respectively. In each of the three plant species, the clustered genes are transcribed into a single RNA species, and the direction of transcription is opposite to that of the gene for cytochrome f which is located distal to the b-559 genes. Comparison of the deduced amino acid sequences with those from the corresponding spinach genes shows 97% homology. The ubiquitous presence and remarkably high degree of structural and functional conservation of this gene cluster supports the hypothesis of a heteromeric assembly and an important functional role for cytochrome b-559.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babcock GT, Widger WR, Cramer WA, Oertling WA, Metz JG (1985) Biochemistry 24:3638–3645

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bisanz-Seyer C (1985) Dissertation, University of Düsseldorf

  • Butler WL (1978) FEBS Lett 95:19–25

    Google Scholar 

  • Cramer WA, Crofts AR (1982) In: Govindjee (ed) Photosynthesis: energy conversion by plants and bacteria, vol 1. Academic Press, New York London, pp 387–467

    Google Scholar 

  • Cramer WA, Whitmarsh J, Widger WR (1981) In: Akoyunoglou G (ed) Photosynthesis: electron transport and phosphorylation, vol 2. International Science Service, Philadelphia, pp 509–522

    Google Scholar 

  • Cramer WA, Widger WR, Herrmann RG, Trebst A (1985) Trends Biochem Sci 10:125–129

    Google Scholar 

  • De La Rosa FF, Galvan F, Losada M (1981) In: Akoyunoglou G (ed) Photosynthesis: electron transport and phosphorylation, vol 2. International Science Service, Philadelphia, pp 531–543

    Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Theor Appl Genet 61:373–384

    Google Scholar 

  • Herrmann RG, Seyer P, Schedel R, Gordon K, Bisanz C, Winter P, Hildebrandt JW, Wlaschek M, Alt J, Driesel AJ, Sears BB (1980) In: Bücher T, Sebald W, Weiss H (eds) Biological chemistry of organelle formation. Springer, Berlin Heidelberg New York, pp 97–112

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) In: Ciferri O, Dure III L (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–154

    Google Scholar 

  • Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) FEBS Lett 176:239–244

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Tittgen J, Nelson N (1985) In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 233–255

    Google Scholar 

  • Matsuda H, Butler WL (1983) Biochim Biophys Acta 725:320–324

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • Metz JG, Ulmer G, Bricker TM, Miles D (1983) Biochim Biophys Acta 725:203–209

    Google Scholar 

  • Morris J, Herrmann RG (1984) Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Rosenberg M, Court D (1979) Annu Rev Genet 13:319–353

    Google Scholar 

  • Seyer P, Kowallik KV, Herrmann RG (1981) Curr Genet 3:189–204

    Google Scholar 

  • Shine J, Dalgarno L (1974) Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Tyagi AK, Herrmann RG (1986) Curr Genet 10:481–486

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Weaver RF, Weissmann C (1979) Nucleic Acids Res 7:1175–1193

    Google Scholar 

  • Westhoff P, Alt J, Nelson N, Bottomley W, Bünemann H, Herrmann RG (1983) Plant Mol Biol 2:95–107

    Google Scholar 

  • Westhoff P, Alt J, Widger WR, Cramer WA, Herrmann RG (1985) Plant Mol Biol 4:103–110

    Google Scholar 

  • Widger WR, Cramer WA, Hermodson M, Meyer D, Gullifor M (1984) J Biol Chem 259:3870–3876

    Google Scholar 

  • Widger WR, Cramer WA, Hermodson M, Herrmann RG (1985) FEBS Lett 191:186–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, N., Seyer, P., Tyagi, A. et al. Cytochrome b-559 genes from Oenothera hookeri and Nicotiana tabacum show a remarkably high degree of conservation as compared to spinach. Curr Genet 10, 619–624 (1986). https://doi.org/10.1007/BF00418129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418129

Key words

Navigation