Skip to main content
Log in

Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei

I. Demonstration of all enzymes required for the operation of the citric acid cycle

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The strict anaerobe Desulfobacter postgatei oxidizes acetate to CO2 with sulfate as electron acceptor. During growth at 28°C with a doubling time of 16 h the oxidation and assimilation rate of acetate were 280 nmol and 20 nmol per min and mg protein, respectively. In cell extracts all the enzymes of the citric acid cycle were found (numbers in brackets=specific activities in nmol per min and mg protein at 28°C): Citrate (si)-synthase (250); aconitase (200); NADP-dependent isocitrate dehydrogenase (8500); 2-oxoglutarate: ferredoxin oxidoreductase (300); succinyl-CoA: acetate CoA transferase (160); membrane bound succinate dehydrogenase (3500); and membrane bound malate dehydrogenase with 2,3-dimethyl-1,4-naphthoquinone as artificial electron acceptor (54). The following enzymes catalyzing the synthesis of oxaloacetate from acetate and CO2 were also present: Acetyl-CoA synthetase (10); ferredoxin dependent pyruvate synthase (30); phosphoenolpyruvate synthetase (10); and phosphoenolpyruvate carboxylase (24). The key enzymes of the glyoxylate cycle were not detected. The order of magnitude of the observed enzyme activities was sufficient to account for an oxidation of acetate via the citric acid cycle and for a synthesis of oxaloacetate from acetate and CO2 as anaplerotic reaction.

The membranes of D. postgatei contained menaquinone (0.35 nmol per mg cell dry weight) rather than ubiquinone or demethylmenaquinone. The cytoplasmic fraction contained ferredoxin (0.09 nmol per mg cell dry weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

Adenosyl-phosphosulfate

CoA:

Coenzyme A

DTNB:

5,5 dithiobis (2-nitrobenzoate)

Pi :

morganic orthophosphate

PEP:

phosphoenolpyruvate

PP:

pyrophosphate

TES:

N-tris-(hydroxymethyl)methyl-2-amino-ethanesulfonic acid

Tricine:

N-tris-(hydroxymethyl)methyl-glycine

Tris:

tris-(hydroxymethyl)-aminomethane

References

  • Akagi JM (1981) Dissimilatory sulfate reduction, mechanistic aspects. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg New York, pp 178–187

    Google Scholar 

  • Anfinsen CB (1955) Aconitase from pig heart muscle. In: Colowick SP, Kapan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 695–698

    Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214

    PubMed  Google Scholar 

  • Bernt E, Bergmeyer HU (1974) Isocitrate-dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 1. Verlag Chemie, Weinheim/Bergstr; pp 664–667

    Google Scholar 

  • Bode C, Goebell H, Stähler E (1968) Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:419–422

    Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Deuslfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252

    Google Scholar 

  • Buchanan BB (1972) Ferredoxin-linked carboxylation reactions. In: Boyer PD (ed) The enzymes, vol VI. Academic Press, New York London, pp 193–216

    Google Scholar 

  • Cánovas JL, Kornberg HL (1969) Phosphoenolpyruvate carboxylase from Escherichia coli. In: Lowenstein JM (ed) Methods in enzymology, vol XIII. Academic Press, New York London, pp 288–296

    Google Scholar 

  • Cooper RA, Kornberg HL (1974) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase. In: Boyer PD (ed) The enzymes, vol X. Academic Press, New York London, pp 631–649

    Google Scholar 

  • Doeg KA, Ziegler DM (1962) Simplified methods for the estimation of iron in mitochondria and submitochondrial fractions. Arch Biochem Biophys 97:37–40

    PubMed  Google Scholar 

  • Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132:67–74

    Google Scholar 

  • Gebhardt NA (1981) Acetat-Oxidation mit Sulfat in Desulfobacter postgatei. Diploma Thesis, Univ Marburg

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle. Arch Microbiol 136:230–233

    Google Scholar 

  • Gottschalk G (1968) The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur J Biochem 5:346–351

    PubMed  Google Scholar 

  • Hederstedt L, Rutberg L (1981) Succinate dehydrogenase — a comparative review. Microbiol Rev 45:542–555

    PubMed  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen nov sp nov, a new acetotrophic non-hydrogenoxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Jencks WP (1973) Coenzyme A transferases. In: Boyer PD (ed) The enzymes, vol IX. Academic Press, New York London, pp 483–496

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    PubMed  Google Scholar 

  • Kaulfers PM (1976) Untersuchungen über Enzyme des Intermediärstoffwechsels von Desulfuromonas acetoxidans Stamm 11070. Diploma Thesis Univ Göttingen

  • Kerscher L, Oesterhelt D (1981) The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem 116:595–600

    PubMed  Google Scholar 

  • Kerscher L, Osterhelt D (1982) Pyruvate: ferredoxin oxidoreductase — new findings on an ancient enzyme. TIBS 7:371–374

    Google Scholar 

  • Klingenberg M, Schollmeyer P (1960) Zur Reversibilität der oxydativen Phosphorylierung. Biochem Z 333:335–350

    PubMed  Google Scholar 

  • Koch OG, Koch-Dedic GA (1974) Handbuch der Spurenanalyse. Methylenblauverfahren. Springer, Berlin Heidelberg New York, pp 1004–1005

    Google Scholar 

  • Kornberg HL (1966) Anaplerotic sequences and their role in metabolism. In: Campbell PN, Greville GD (eds) Essays in biochemistry, vol 2. Academic Press, New York London, pp 1–31

    Google Scholar 

  • Kröger A (1978) Determination of contents and redox states of ubiquinone and menaquinone. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol LIII. Academic Press, New York San Francisco London, pp 579–591

    Google Scholar 

  • Kröger A, Dadák V (1969) On the role of quinones in bacterial electron transport. Eur J Biochem 11:328–340

    PubMed  Google Scholar 

  • Kröger A, Innerhofer A (1976) The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:487–495

    Google Scholar 

  • Kröger A, Schimkat M, Niedermaier S (1974) Electron-transport phosphorylation coupled to fumarate reduction in anaerobicallyr grown Proteus rettgeri. Biochim Biophys Acta 347:273–289

    PubMed  Google Scholar 

  • Kröger A, Winkler E, Innerhofer A, Hackenberg H, Schägger H (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475

    PubMed  Google Scholar 

  • Kruber O (1929) Über das 2,3-Dimethyl-naphthalin im Steinkohlenteer. Berichte der Deutschen Chem Gesellschaft: 3044–3046

  • Lovley DR, Klug MJ (1982) Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol 43:552–560

    Google Scholar 

  • Mayhew SG (1971) Nondenaturing procedure for rapid preparation of ferredoxin from Clostridium pasteurianum. Anal Biochem 42:191–194

    PubMed  Google Scholar 

  • Ochoa S (1955) Crystalline condensing enzyme from pig heart. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol I. Academic Press, New York, pp 685–694

    Google Scholar 

  • Palmer G (1975) Iron-sulfur proteins. In: Boyer PD (ed) The enzymes, vol XII, part B. Academic Press, New York San Francisco London, pp 1–56

    Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Phil Trans R Soc Lond B 298:443–446

    Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen nov sp nov, a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    PubMed  Google Scholar 

  • Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg New York, pp 169–177

    Google Scholar 

  • Schönheit P, Wäscher C, Thauer RK (1978) A rapid procedure for the purification of ferredoxin from Clostridia using polyethyleneimine. FEBS Lett 89:219–222

    Article  PubMed  Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    PubMed  Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11

    Google Scholar 

  • Spector LB (1972) Citrate cleavage and related enzymes. In: Boyer PD (ed) The enzymes, vol VII. Academic Press, New York London, pp 357–389

    Google Scholar 

  • Srere PA, Brazil H, Gonen L (1963) The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem Scand 17:129–134

    Google Scholar 

  • Stadtman ER (1973) Adenylyl transfer reactions. In: Boyer PD (ed) The enzymes, vol VIII, part A. Academic Press, New York London, pp 2–49

    Google Scholar 

  • Stille W (1982) Untersuchungen zur Reduktion von APS bei einigen Stämmen sulfatreduzierender Bakterien. Diploma Thesis, Univ Bonn

  • Takeo I (1978) FAD-dependent malate dehydrogenase, a phospholipid-requiring enzyme from Myobacterium sp strain Takeo. Biochim Biophys Acta 523:37–46

    PubMed  Google Scholar 

  • Thauer RK (1982) Dissimilatory sulphate reduction with acetate as electron donor. Phil Trans R Soc Lond B 298:467–471

    Google Scholar 

  • Thauer RK, Rupprecht E, Jungermann K (1970) Glyoxylate inhibition of clostridial pyruvate synthase. FEBS Lett 9:271–273

    Article  PubMed  Google Scholar 

  • Thauer RK, Käufer B, Scherer P (1975) The active species of “CO2” utilized in ferredoxin-linked carboxylation reactions. Arch Microbiol 104:237–240

    PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  Google Scholar 

  • Unden G, Hackenberg H, Kröger A (1980) Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta 591:275–288

    PubMed  Google Scholar 

  • Utter MF, Kolenbrander HM (1972) Formation of oxalacetate by CO2 fixation on phosphoenolpyruvate. In: Boyer PD (ed) The enzymes, vol VI. Academic Press, New York London, pp 117–168

    Google Scholar 

  • Weitzman PDJ (1981) Unity and diversity in some bacterial citric acid-cycle enzymes. In: Rose AH, Morris JG (eds). Advances in microbial physiology, vol 22. Academic Press, London New York Toronto Sydney San Francisco, pp 185–244

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis, Univ Göttingen

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen nov sp nov. Arch Microbiol 129:395–400

    PubMed  Google Scholar 

  • Williamson JR, Corkey BE (1969) Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. In: Lowenstein JM (ed) Methods in enzymology, vol XIII. Academic Press, New York London, pp 434–513

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandis-Heep, A., Gebhardt, N.A., Thauer, R.K. et al. Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei . Arch. Microbiol. 136, 222–229 (1983). https://doi.org/10.1007/BF00409849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409849

Key words

Navigation