Skip to main content
Log in

Bacterial 2,3-butanediol dehydrogenases

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bud:

2,3-butanediol

DH:

dehydrogenase

References

  • Aubert, J. P., Gavard, R.: Étude de la 2,3 butanediol-déshydrogenase avec un extract enzymatique bactérien. Compte rendus Acad. Sci. (Paris) 233, 1320–1322 (1951)

    Google Scholar 

  • Bryn, K., Hetland, Ø., Størmer, F. C.: The reduction of diacetyl and acetoin in Aerobacter aerogenes—Evidence for one enzyme catalyzing both reactions. Eur. J. Biochem. 18, 116–119 (1971)

    PubMed  Google Scholar 

  • Guymon, J. F., Crowell, E. A.: Direct gas chromatographic determination of levo- and meso-2,3-butanediols in wines and factors affecting their formation. Am. J. Enol. Vitic. 18, 200–209 (1967)

    Google Scholar 

  • Hetland, Ø., Olsen, B. R., Christensen, T. B., Størmer, F. C.: Diacetyl(acetoin) reductase from Aerobacter aerogenes—Structural properties. Eur. J. Biochem. 20, 200–205 (1971)

    PubMed  Google Scholar 

  • Juni, E.: Mechanisms of formation of acetoin by bacteria. J. Biol. Chem. 195, 715–726 (1952)

    PubMed  Google Scholar 

  • Juni, E., Heym, G. A.: Cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2,3-butanediol cycle. J. Bacteriol. 71, 425–432 (1956)

    PubMed  Google Scholar 

  • Larsen, S. H., Størmer, F. C.: Diacetyl(acetoin) reductase from Aerobacter aerogenes; kinetic mechanism and regulation by acetate of the reversible reduction of acetoin to 2,3-butanediol. Eur. J. Biochem. 34, 100–106 (1973)

    PubMed  Google Scholar 

  • Løken, J. P., Størmer, F. C.: Acetolactate decarboxylase from Aerobacter aerogenes. Purification and properties. Eur. J. Biochem. 14, 133–137 (1970)

    PubMed  Google Scholar 

  • Masuda, H., Muraki, H.: Enzymatic determination of acetoin in wines. J. Sci. Food Agric. 26, 1027–1036 (1975)

    Google Scholar 

  • Maurer, H. R.: Disk-Elektrophorese. Berlin: de Gruyter 1968

    Google Scholar 

  • Muraki, H., Masuda, H.: Enzymatic determination of butane-2,3-diol in wines. J. Sci. Food Agric. 27, 345–350 (1976)

    PubMed  Google Scholar 

  • Neish, A. C.: Production and properties of 2,3-butanediol. IV. Purity of the levorotatory 2,3-butanediol produced by Aerobacillus polymyxa. Can. J. Res. Sect. B23, 10–16 (1945)

    Google Scholar 

  • Stanier, R. Y., Fratkin, S. B.: Studies on bacterial oxidation of the 2,3-butanediol and related compounds. Can. J. Res. Sect. B22, 140–153 (1944)

    Google Scholar 

  • Størmer, F. C.: Isolation of crystalline pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. J. Biol. Chem. 242, 1756–1759 (1967)

    PubMed  Google Scholar 

  • Taylor, M. B., Juni, E.: Stereoisomeric specifities of 2,3-butanediol-dehydrogenases. Biochim. Biophys. Acta 39, 448–457 (1960)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhn-Bentz, H., Radler, F. Bacterial 2,3-butanediol dehydrogenases. Arch. Microbiol. 116, 197–203 (1978). https://doi.org/10.1007/BF00406037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406037

Key words