Skip to main content
Log in

Oxygen tolerance of strictly aerobic hydrogen-oxidizing bacteria

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Growth of various bacteria, especially aerobic hydrogen-oxidizing bacteria, in the presence of 2 to 100% (v/v) oxygen in the gas atmosphere was evaluated. The bacterial strains included Alcaligenes eutrophus, A. paradoxus, Aquaspirillum autotrophicum, Arthrobacter spec. strain 11X, Escherichia coli, Arthrobacter globiformis, Nocardia opaca, N. autotrophica, Paracoccus denitrificans, Pseudomonas facilis, P. putida, and Xanthobacter autotrophicus. Under heterotrophic conditions with fructose or gluconate as substrates neither colony formation on solid medium nor the growth rates in liquid media were drastically impaired by up to 100% oxygen. In contrast, autotrophic growth — with hydrogen, carbon dioxide and up to 80% oxygen in the gas atmosphere — was strongly depressed by high oxygen concentrations. However, only the growth rate, not the viability of the cells, was decreased. Growth retardation was accompanied by a decrease of hydrogenase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aragno, M. and Schlegel, H. G. 1978. Physiological characterization of the hydrogen bacterium Aquaspirillum autotrophicum. — Arch. Microbiol. 116: 221–229.

    Google Scholar 

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, C., Mayer, F. and Schlegel, H. G. 1976. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ29. — Arch. Microbiol. 108: 1–26.

    PubMed  Google Scholar 

  • Biggins, D. R. and Postgate, J. R. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. — J. Gen. Microbiol. 56: 181–193.

    PubMed  Google Scholar 

  • Dalton, H. 1980. Chemoautotrophic nitrogen fixation. p. 177–195. In W. D. Stewart and J. R. Gallon (eds), Nitrogen fixation. Annual Proceedings of the Phytochemical Society of Europe. Vol. 18. — Academic Press, London.

    Google Scholar 

  • Eberhardt, U. 1969. On chemolithotrophy and hydrogenase of a gram-positive Knallgas bacterium. — Arch. Mikrobiol. 66: 91–104.

    PubMed  Google Scholar 

  • Fridovich, I. 1974. Superoxide and evolution. Horizons. — Biochem. Biophys. 1: 1–37.

    Google Scholar 

  • Gottlieb, S. F. 1971. Effect of hyperbaric oxygen on microoganisms. — Annu. Rev. Microbiol. 25: 111–152.

    Article  PubMed  Google Scholar 

  • Harrison, D. E. F. 1973. Growth, oxygen, and respiration. — Crit. Rev. Microbiol. 2: 185–228.

    Google Scholar 

  • Hassan, H. M. and Fridovich, I. 1979. Superoxide dismutase and its role for survival in the presence of oxygen. p. 179–193. In S. Bernhard (ed.), Life Sciences Research Report 13. M. Shilo (ed.), Strategies of microbial life in extreme environments. — Verlag Chemie, Weinheim.

    Google Scholar 

  • Ibrahim, M. and Schlegel, H. G. 1980. Oxygen supply to bacterial suspensions of high cell densities by hydrogen peroxide. — Biotechnol. Bioeng. 22: 1877–1894.

    PubMed  Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P., Blackburn, T. H. and Cohen, Y. 1979. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. — Appl. Environ. Microbiol. 38: 46–58.

    Google Scholar 

  • King, W. R. and Andersen, K. 1980. Efficiency of CO2 fixation in a glycollate oxidoreductase mutant of Alcaligenes eutrophus which exports fixed carbon as glycollate. — Arch. Microbiol. 128: 84–90.

    Google Scholar 

  • Krieg, N. R. 1976. Biology of the chemoheterotrophic spirilla. — Bacteriol. Rev. 40: 55–115.

    PubMed  Google Scholar 

  • Lorimer, G. H. and Andrews, T. J. 1981. The C2 photo- and chemo-respiratory carbon oxidation cycle. p. 329–374. In M. D. Hatch and N. K. Boardman (eds), The biochemistry of plants. Vol. 8. — Academic Press, New York.

    Google Scholar 

  • Malik, K. A., Jung, C., Claus, D. and Schlegel, H. G. 1981. Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus. — Arch. Microbiol. 129: 254–256.

    Google Scholar 

  • Morris, J. G. 1975. The physiology of obligate anaerobiosis. — Adv. Microb. Physiol. 12: 168–246.

    Google Scholar 

  • Morris, J. G. 1976. Oxygen and the obligate anaerobe. — J. Appl. Bacteriol. 40: 229–244.

    PubMed  Google Scholar 

  • Morris, J. G. 1979. Nature of oxygen toxicity in anaerobic microorganisms. p. 149–162. In S. Bernhard (ed.), Life Sciences Research Report 13. M. Shilo (ed.), Strategies of microbial life in extreme environments. — Verlag Chemie, Weinheim.

    Google Scholar 

  • Mulder, E. G. and Brotonegoro, S. 1974. Free-living heterotrophic nitrogen-fixing bacteria. p. 37–85. In A. Quispel (ed.), The biology of nitrogen fixation. — North-Holland, Amsterdam.

    Google Scholar 

  • Okon, Y., Houchins, J. P., Albrecht, S. L. and Burris, R. H. 1977. Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. — J. Gen. Microbiol. 98: 87–93.

    PubMed  Google Scholar 

  • Schlegel, H. G. 1977. Aeration without air: oxygen supply by hydrogen peroxide. — Biotechnol. Bioeng. 19: 413–424.

    PubMed  Google Scholar 

  • Schlegel, H. G., Ibrahim, M. E. L., Wilde, E., Schneider, K., Schlesier, M., Friedrich, B. and Malik, K. A. 1981. Detrimental and beneficial effects of oxygen exerted on hydrogen-oxidizing bacteria. p. 107–129. In J. M. Lyons, R. C. Valentine, D. A. Phillips, D. W. Rains and R. C. Huffaker (eds), Genetic engineering of symbiotic nitrogen fixation. — Plenum Press, New York.

    Google Scholar 

  • Schlegel, H. G., Kaltwasser, H. und Gottschalk, G. 1961. Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. — Arch. Mikrobiol. 38: 209–222.

    PubMed  Google Scholar 

  • Schlegel, H. G. and Schneider, K. 1978. Introductory report: distribution and physiological role of hydrogenases in microorganisms. p. 15–44. In H. G. Schlegel and K. Schneider (eds), Hydrogenases: their catalytic activity, structure and function. — Verlag Erich Goltze KG., Göttingen.

    Google Scholar 

  • Schlesier, M. and Friedrich, B. 1981. In vivo inactivation of soluble hydrogenase of Alcaligenes eutrophus. — Arch. Microbiol. 129: 150–153.

    PubMed  Google Scholar 

  • Schneider, K. and Schlegel, H. G. 1981. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. — Biochem. J. 193: 99–107.

    PubMed  Google Scholar 

  • Wimpenny, J. W. T. 1969. Oxygen and carbon dioxide as regulators of microbial growth and metabolism. — Symp. Soc. Gen. Microbiol. 19: 161–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, E., Schlegel, H.G. Oxygen tolerance of strictly aerobic hydrogen-oxidizing bacteria. Antonie van Leeuwenhoek 48, 131–143 (1982). https://doi.org/10.1007/BF00405198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405198

Keywords

Navigation