Skip to main content
Log in

Analytic vectors, anomalies and star representations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is hinted that anomalies are not really anomalous since (at least in characteristic examples) they can be related to a lack of common analytic vectors for the Hamiltonian and the observables. We reanalyze the notions of analytic vectors and of local representations of Lie algebras in this light, and show how the notion of preferred observables introduced in the deformation (star product) approach to quantization may help give an anomaly-free formulation to physical problems. Finally, some remarks are made concerning the applicability of these considerations to field theory, especially in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, E., Ann. Math. 81, 547 (1959).

    Google Scholar 

  2. Gårding, L., Bull. Soc. Math. France 88, 73 (1960).

    Google Scholar 

  3. Flato, M. and Sternheimer, D., Commun. Math. Phys. 12, 296 (1969); 14, 5 (1969); Phys. Rev. Lett. 16, 1185 (1966).

    Google Scholar 

  4. Flato, M., Simon, J., Snellman, H., and Sternheimer, D., Ann. Sci. École Norm. Sup. (4) 5, 423 (1972); Simon, J., Commun. Math. Phys. 28, 39 (1972); Flato, M. and Simon, J., J. Funct. Anal. 13, 268 (1973).

    Google Scholar 

  5. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Ann. Phys. 111, 61; 111 (1978); Fronsdal, C., Rep.Math. Phys. 15, 111 (1978); J. Math. Phys. 20, 2226 (1979); Arnal, D., Cortet, J. C., Flato, M., and Sternheimer, D., in E. Tirapegui (ed.), Field Theory, Quantization and Statistical Physics, D. Reidel, Dordrecht, 1981, p. 85.

    Article  Google Scholar 

  6. Sternheimer, D., AMS Lectures in Applied Math 21, 255 (1985); Sém. Math. Sup. Montréal 102, 260 (1986); Arnal, D. and Cortet, J. C., J. Geom. Phys. 2, 83 (1985); Cahen, M. and Gutt, S., Lecture at the Athens (GA) meeting, July 1988; Cahen, M., in D. Bernard and Y. Choquet-Bruhat (eds.), Physique quantique et géométrie, Hermann, Paris, 1988, p. 43.

    Google Scholar 

  7. Esteve, J. G., Phys. Rev. D34, 674 (1986); Manton, N. S. ITP Santa Barbara Preprint NSF-ITP 83-164 (1983); Ann. Phys. 159, 220 (1985).

    Article  Google Scholar 

  8. Gårding, L., Proc. Nat. Acad. Sci. USA 33, 331 (1947); Dixmier, J. and Malliavin, P., Bull. Sci. Math. (2) 102, 307 (1978).

    Google Scholar 

  9. Coleman, S. and Mandula, J., Phys. Rev. 159, 1251 (1967); Haag, R., Lopuszanski, J., and Sohnius, M., Nucl. Phys. B88, 257 (1975).

    Article  Google Scholar 

  10. Reeh, H., J. Math. Phys. 29, 1535 (1988); Sekine, K., Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1986, p. 127.

    Google Scholar 

  11. Craige, N. S., Nahm, W., and Naraim, S., Ann. Phys. 174, 78 (1987).

    Article  Google Scholar 

  12. Martin, C., Lett. Math. Phys. 1 155 (1976).

    Google Scholar 

  13. Kogut, J. and Susskind, L., Phys. Rev. D11, 3594 (1975).

    Article  Google Scholar 

  14. Isler, K., Schmid, C., and Trugenberger, C. A., Preprint ETH-PT/87-1, Zurich.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcalde, C., Sternheimer, D. Analytic vectors, anomalies and star representations. Lett Math Phys 17, 117–127 (1989). https://doi.org/10.1007/BF00402326

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402326

AMS subject classifications (1985)

Navigation