Skip to main content
Log in

Mineralogy and petrology of silicate inclusions in iron meteorites

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Silicate inclusions in 17 iron meteorites have been analyzed by the electron microprobe and classified, according to their phase assemblages, compositions, and textures, into three major types: Odessa, Copiapo, and Weekeroo Station, and three miscellaneous types: Enon, Kendall County, and Netschaëvo. Phase compositions in both Odessa- and Copiapo-type inclusions are very similar, but the two types are different in texture and constituent phases. Weekeroo Station-type inclusions are very different in every respect from other inclusions.

For Odessa- and Copiapo-type inclusions, the distribution coefficients of Fe2+ and Mg in coexisting orthopyroxene and clinopyroxene indicate equilibration temperatures of ∼1,000° C, and the Ca/(Ca+Mg) ratios indicate temperatures of 900° C to 1,000° C. Equilibration temperatures determined for chromite-olivine pairs have a higher range of 1,154° C to 1,335° C. Minor element distributions among coexisting ferromagnesian silicates in these inclusions follow consistent patterns and are constant for any given sample, suggesting equilibrium assemblages. Major and minor element distributions for Weekeroo Station inclusions are anomalous, indicating nonequilibrium.

Compositional data, the fragmentary shapes of many inclusions, the highly differentiated characteristic of two types of inclusions, the apparent disequilibrium between kamacite in inclusions and kamacite of the iron host, and the relict chondrules found in Netschaëvo suggest that many of the inclusions did not form cogenetically with the iron host, but represent pre-existing stony material that was taken up by an iron melt, probably not in the core of the parent body (or bodies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, E.: Origin, age and composition of meteorites. Space Sci. Rev. 3, 583–714 (1964).

    Article  Google Scholar 

  • Aoki, K., Kushiro, I.: Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contr. Mineral and Petrol. 18, 326–337 (1968).

    Google Scholar 

  • Bartholome, P.: Co-existing pyroxenes in igneous and metamorphic rocks. Geol. Mag. 98, 346–348 (1961).

    Google Scholar 

  • Bence, A. E., Burnett, D. S.: Chemistry and mineralogy of the silicates and metal of the Kodaikanal meteorite. Geochim. Cosmochim. acta 33, 375–385 (1969).

    Article  Google Scholar 

  • Berwerth, F.: Das Meteoreisen von Kodaikanal und seine Silikatausscheidungen. Tschermaks Mineral. Petrog. Mitt. 25, 179–197 (1906).

    Google Scholar 

  • Bogard, D., Burnett, D., Eberhardt, P., Wasserburg, G. J.: 40Ar-40K ages of silicate inclusions in iron meteorites. Earth and Planet. Sci. Letters 3, 275–283 (1968).

    Article  Google Scholar 

  • Bowen, N., Schairer, J.: The system MgO-FeO-SiO2. Am. J. Sci. 29, 151–217 (1935).

    Google Scholar 

  • Boyd, F. R., Schairer, J. F.: The system MgSiO3-CaMgSi2O6. J. Petrol.5, 275–309 (1964).

    Google Scholar 

  • Bunch, T. E., Fuchs, L. H.: Yagiite, a sodium-magnesium analogue of osumilite. Am. Mineralogist 54, 14–19 (1969).

    Google Scholar 

  • —, Keil, K., Snetsinger, K. G.: Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Acta 31, 1569–1582 (1967).

    Article  Google Scholar 

  • —, Olsen, E.: Potassium feldspar in Weekeroo Station, Kodaikanal, and Colomera iron meteorites. Science 160, 1223–1225 (1968).

    Google Scholar 

  • Burnett, D. S., Wasserburg, G. J.: Evidence for the formation of iron meteorite at 3.8×109 years. Earth and Planet. Sci. Letters 2, 137–147 (1967a).

    Article  Google Scholar 

  • — —: 87Rb-87 Sr ages of silicate inclusions in iron meteorites. Earth and Planet. Sci. Letters 2, 397 (1967b).

    Article  Google Scholar 

  • Buseck, P. R., Keil, K.: Meteoritic rutile. Am. Mineralogist 51, 1506–1515 (1966).

    Google Scholar 

  • Carstens, H.: Note on the distribution of some minor elements in coexisting ortho- and clinopyroxenes. Norsk. Geol. Tiddsk. 38, 257–260 (1958).

    Google Scholar 

  • Cohen, E.: Meteoreisen-Studien XI. Ann. Naturhist. Hofmus. Wien 15, 382 (1900).

    Google Scholar 

  • —: Meteoritenkunde, H. III, 419 pp. Stuttgart: I. E. Schweizerbart 1905.

    Google Scholar 

  • Davis, B. T. C., Boyd, F. R.: The join Mg2Si2O6-CaMgSi2O6 at 30 kb pressure and its application to pyroxenes from kimberlites. J. Geophys. Res. 71, 3567–3576 (1966).

    Google Scholar 

  • Deer, W. A., Howie, R. A., Zussman, J.: Rock forming minerals, vol.2: Chain silicates, 4th ed. London: Longmans, Green & Co. Ltd. 1963.

    Google Scholar 

  • Duncumb, P., Shields, P. K.: Effect of critical excitation potential on the absorption correction in X-ray micro-analysis. Proc. Symp. on Electron Microprobe, Washington, D.S., 1964. (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, editors), p. 284–295. New York: John Wiley 1966.

    Google Scholar 

  • El Goresy, A.: Mineralbestand und Strukturen der Graphit- und Sulphideinschlüsse in Eisenmeteoriten. Geochim. Cosmochim. Acta 29, 1131–1151 (1965).

    Article  Google Scholar 

  • - Quantitative electron microprobe analyses of K-feldspar grains from the Odessa iron meteorite. Abstract, 30th Meeting of the Meteoritical Society, October 25–27 (1967).

  • Fricker, P. E., Goldstein, J. I., Summers, A. L.: Cooling rates and thermal histories of iron and stony-iron meteorites. Geochim. Cosmochim. Acta (In press).

  • Fuchs, L.: Occurrence of whitlockite in chondritic meteorites. Science 137, 425–426 (1962).

    Google Scholar 

  • —: The phosphate mineralogy of meteorites. Symposium on Meteorite Research (P. M. Millman, ed.), p. 319–331. Dordrecht, Holland: D. Reidel, Publ. Co. 1969.

    Google Scholar 

  • —, Olsen, E., Henderson, E.: On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 31, 1711–19 (1967).

    Article  Google Scholar 

  • Goldstein, J., Short, J.: Cooling rates of 27 iron and stony-iron meteorites. Preprint X-641-66-289, Goddard Space Flight Center, Greenbelt, Md. (1966).

    Google Scholar 

  • Grover, J., Orville, P.: The partitioning of cations between coexisting single-and multi-site phases with application to the assemblages: orthopyroxene-clinopyroxene and orthopyroxene-olivine. Geochim. Cosmochim. Acta 33, 205–226 (1969).

    Article  Google Scholar 

  • Heinrich, K. F. J.: X-ray absorption uncertainty. Proc. Symp. on Electron Microprobe, Washington, D. C., 1964 (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, editors), p. 296–377. New York: John Wiley 1966.

    Google Scholar 

  • Henderson, E. P., Perry, S. H.: The Linwood (Nebraska) meteorite. U. S. Nat. Museum Proceed. 99, 357–360 (1949).

    Google Scholar 

  • Hodge-Smith, T.: The Weekeroo Station meteorite: A siderite from South Australia. Rec. Austr. Mus. 17, 312–313 (1932).

    Google Scholar 

  • Jackson, E. D.: Chemical variation in coexisting chromite and olivine in chromite zones of the Stillwater Complex. (In press).

  • Keil, K.: Mineralogical modal analysis with the electron microprobe X-ray analyzer. Am. Mineralogist 50, 2089–2092 (1965).

    Google Scholar 

  • —: Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res. 73, 6945–6976 (1968).

    Google Scholar 

  • —: Meteorite composition. Handbook of Geochemistry (K. H. Wedepohl, editor). p. 78–115. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Kretz, R.: Some applications of thermo-dynamics to coexisting minerals of variable composition. Examples: orthopyroxene-clinopyroxene and orthopyroxene-garnet. J. Geol. 69, 361–387 (1961).

    Google Scholar 

  • —: Distribution of magnesium and iron between orthopyroxene and calcic pyroxene in natural mineral assemblages. J. Geol. 71, 773–785 (1963).

    Google Scholar 

  • Marshall, R. R.: Devitrification of natural glass. Bull. Geol. Soc. Am. 72, 1493–1520 (1961).

    Google Scholar 

  • —, Keil, K.: Polymineralic inclusions in the Odessa iron meteorite. Icarus 4, 461–479 (1965).

    Article  Google Scholar 

  • Mason, B.: The Woodbine meteorite, with notes on silicates in iron meteorites. Mineral. Mag. 36, 120–127 (1967).

    Google Scholar 

  • McCallum, I. S.: Equilibrium relationships among the coexisting minerals in the Stillwater Complex, Montana. Ph. D. Dissertation, Univ. of Chicago (1968).

  • Merrill, G. P.: Quartz in meteoric stones. Am. Mineralogist 9, 112–113 (1924).

    Google Scholar 

  • Mueller, R. F.: Compositional characteristics of equilibrium relations in mineral assemblages of a metamorphosed iron formation. Am. J. Sci. 258, 449–497 (1960).

    Google Scholar 

  • —: Analysis of relations among Mg, Fe and Mn in certain metamorphic minerals. Geochim. Cosmochim. Acta 25, 267–296 (1961).

    Article  Google Scholar 

  • —: Phase equilibria and the crystallization of chondritic meteorites. Geochim. Cosmochim. Acta 28, 189–207 (1964).

    Article  Google Scholar 

  • Nafziger, R. H., Muan, A.: Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. Am. Mineralogist 52, 1364–85 (1967).

    Google Scholar 

  • Nixon, P. H., Knorring, O. v., Rooke, J. M.: Kimberlites and associated inclusions of Basutoland: A mineralogical and chemical study. Am. Mineralogist 48, 1090–1132 (1963).

    Google Scholar 

  • Olsen, E.: Amphibole: first occurrence in meteorite. Science 156, 61–62 (1967).

    Google Scholar 

  • - Jarosowich, E.: The bulk composition of silicate inclusions in the Weekeroo Station iron meteorite. (In preparation.)

  • —, Mueller, R. F.: Silicates in some iron meteorites. Nature 201, 596–597 (1963).

    Google Scholar 

  • — —: Stability of orthopyroxenes with respect to pressure, temperature, and composition. J. Geol. 74, 620–625 (1966).

    Google Scholar 

  • Park, F. R., Bunch, T. E., Massalski, T. B.: A study of the silicate inclusions and other phases in the Campo del Cielo meteorite. Geochim. Cosmochim. Acta 30, 399–414 (1966).

    Article  Google Scholar 

  • Philibert, J. A.: A method for calculating the absorption correction in electron probe microanalysis. Proc. Third Internat. Symp. on X-ray optics and X-ray microanalysis, Stanford, 1962 (H. H. Pattee, V. E. Cosslett, and A. Engstrom, editors), p. 379–392. New York: Academic Press 1963.

    Google Scholar 

  • Prior, G.: On the mesosiderite-grahamite group of meteorites. Mineral. Mag. 18, 151–172 (1918).

    Google Scholar 

  • Ramberg, H., de Vore, G. W.: The distribution of Fe2+ and Mg2+ in coexisting olivines and pyroxenes. J. Geol. 59, 193–210 (1951).

    Google Scholar 

  • Ramdohr, P.: Chromite and chromite chondrules in meteorites I. Geochim. Cosmochim. Acta 31, 1961–1967 (1967).

    Article  Google Scholar 

  • Ringwood, A.: Chemical and genetic relationships among meteorites. Geochim. Cosmochim. Acta 24, 159–197 (1961).

    Article  Google Scholar 

  • Saxena, S. K.: Crystal-chemical aspects of distribution of elements among certain coexisting rock-forming silicates. Neues Jahrb. Mineral. Abhandl. 108, 292–323 (1968).

    Google Scholar 

  • Schmus, Van, R., Koffman, D.: Equilibration temperatures of iron and magnesium in chondritic meteorites. Science 155, 1009–1011 (1967).

    Google Scholar 

  • Taylor, H. P., Jr.: Oxygen isotope geochemistry of igneous rocks. Contr. Mineral and Petrol. 19, 1–71 (1968).

    Google Scholar 

  • Thompson, J. B.: Role of aluminium in rock forming silicates. Bull. Geol. Soc. Am. 58, 1232 (1947).

    Google Scholar 

  • Urey, H. C., Craig, H.: The composition of the stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 38–82 (1953).

    Article  Google Scholar 

  • —: Chemical evidence relative to the origin of the solar system. Monthly Notices Roy. Astron. Soc. 131, 199–233 (1966).

    Google Scholar 

  • Wasserburg, G.J., Burnett, D.S., Frondel, C.: Strontium-rubidium age of an Iron meteorite. Science 150, 1814 (1965).

    Google Scholar 

  • —, Sanz, H. G., Bence, A. E.: Potassium feldspar phenocrysts in the surface of Colomera, an iron meteorite. Science 161, 684–687 (1968).

    Google Scholar 

  • White, R. W.: Ultramafic inclusions in basaltic rocks from Hawaii. Contr. Mineral. and Petrol. 12, 246–314 (1966).

    Google Scholar 

  • Wittry, D. B.: Methods of quantitative electron probe analysis. Proc. Twelfth Ann. Conf. on Applied X-ray Analysis, Denver, 1963 (W. H. Mueller, G. Mallett, and M. Fay, editors), vol. 7, p. 395–418. New York: Plenum Press 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunch, T.E., Keil, K. & Olsen, E. Mineralogy and petrology of silicate inclusions in iron meteorites. Contr. Mineral. and Petrol. 25, 297–340 (1970). https://doi.org/10.1007/BF00399290

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399290

Keywords

Navigation