Skip to main content
Log in

Behavioral implications of mechanistic ecology

Thermal and behavioral modeling of desert ectotherms and their microenvironment

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Mechanistic principles from engineering, meteorology, and soil physics are integrated with ecology and physiology to develop models for prediction of animal behavior. The Mojave Desert biome and the desert iguana are used to illustrate these principles.

A transient energy balance model for animals in an outdoor environment is presented. The concepts and relationships have been tested in a wind tunnel, in a simulated desert, and in the field. The animal model requires anatomical information and knowledge of the thermoregulatory responses of the animal. The micrometeorological model requires only basic meteorological parameters and two soil physical properties as inputs. Tests of the model in the field show agreement between predicted and measured temperatures above and below the surface of about 2 to 3°C.

The animal and micrometeorological models are combined to predict daily and seasonal activity patterns, available times for predator-prey interaction, and daily, seasonal and annual requirements for food and water. It is shown that food, water and the thermal environment can limit animal activity, and furthermore, the controlling limit changes with season. Actual observations of activity patterns and our predictions show close agreement, in many cases, and pose intriguing questions in those situations where agreement does not exist. This type of modeling can be used to further study predator-prey interactions, to study how changes in the environment might affect animal behavior, and to answer other important ecological and physiological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, C. E., Whitford, W. G.: Energy requirements of Uta stansburiana. Copeia 4, 678–682 (1968).

    Google Scholar 

  • Bartholomew, G. A., Tucker, V. A.: Control of changes in body temperature, metabolism and circulation by the Agamid Lizard, Amphibolorus barbatus. Physiol. Zool. 36 (3), 199–218 (1963).

    Google Scholar 

  • Bartlett, P. N., Gates, D. M.: The energy budget of a lizard on a tree trunk. Ecology 48, 315–322 (1967).

    Google Scholar 

  • Beckman, W. A., Mitchell, J. W., Porter, W. P.: Thermal model for prediction of a desert iguana's daily and seasonal behavior. Trans. ASME, Series C 95, 257–262 (1973).

    Google Scholar 

  • Birkebak, R. C.: Heat transfer in biological systems. Intern. Rev. General and Expt. Zool. 2, 269–344 (1966).

    Google Scholar 

  • Brattstrom, B.: Personal communication (1972).

  • Carslaw, H. S., Jaeger, J. C.: Conduction of heat in solids, p. 82. London: Oxford Univ. Press 1959.

    Google Scholar 

  • Chato, J. C.: A survey of thermal conductivity and diffusivity data on biological materials. A.S.M.E. 66-WA/HT-37 (1966).

  • Cloudsley-Thompson, J. J.: Rhythmic activity, temperature tolerance, water relations and mechanism of heat death in a tropical skink and gecko. J. Zool. 146, 55–69 (1965).

    Google Scholar 

  • Cowles, R. B., Bogert, C. M.: A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).

    Google Scholar 

  • Crosbie, R. J., Hardy, J. D., Fessenden, E.: Electrical analog simulation of temperature regulation in man. IRE Trans. 8, 245 (1961).

    Google Scholar 

  • Dawson, W. R., Bartholomew, G. A.: Metabolic and cardiac responses to temperature in the lizard, Dipsosaurus dorsalis. Physiol. Zool. 31, 100–111 (1958).

    Google Scholar 

  • DeWitt, C. B.: Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 40, 49–66 (1967).

    Google Scholar 

  • Edney, E. B.: Temperature relations of arthropods. Biol. Rev. 29, 185–219 (1954).

    Google Scholar 

  • Geiger, R.: The climate near the ground. Cambridge, Mass. Harvard University Press 1965.

    Google Scholar 

  • Griffiths, A. J., Holling, C. S.: A competition submodel for parasites and predators. Can. Entomol. 101 (8), 785–818 (1969).

    Google Scholar 

  • Heath, J. E.: Reptilian thermoregulation: evaluations of field studies. Science 146 (3645), 784–785 (1964).

    PubMed  Google Scholar 

  • Holman, J. P.: Heat transfer. London-New York: McGraw-Hill Book 1968.

    Google Scholar 

  • Holling, C. S.: The functional response of predators to prey density and its role in population regulation. Mem. Ent. Soc. Can. 45, 1–60 (1965).

    Google Scholar 

  • Johnson, O. H., Bryant, M. D., Miller, A. H.: Vertebrate animals of the Providence Mountains area of California. v. Calif. Zool. 48 (5), 221–376 (1948).

    Google Scholar 

  • Kavanau, J. L., Norris, K. S.: Behavior studies by capacitance sensing. Science 134 (3481), 730–732 (1961).

    PubMed  Google Scholar 

  • Kendeigh, L. C.: The relation of metabolism to development of temperature regulations in birds. J. exp. Zool. 82, 419–438 (1939).

    Google Scholar 

  • Kluger, M., Heath, J. E.: The effect of posterior hypothalamic lesions on thermoregulation in the lizard, Dipsosaurus dorsalis. Physiol. Zool. (in press, 1973).

  • Lasiewski, R. C.: Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiol. Zool. 36, 122–140 (1963).

    Google Scholar 

  • Lee, D. H. K., Robinson, K., Hines, H. J. G.: Reactions of the rabbit to hot atmospheres. Proc. Roy. Soc. Queensland 8 (8), 129–144 (1941).

    Google Scholar 

  • London, A. L., Nottage, H. B., Boelter, L. M. K.: Determination of unit conductances of heat and mass transfer by the transient method. Ind. and Eng. Chem. 33, 467 (1941).

    Google Scholar 

  • Mayhew, W. W.: Photoperiodic responses in three species of the lizard genus Uma. Pan-Pacific Entomologist 40 (2), 95–113 (1964).

    Google Scholar 

  • Mayhew, W. W.: Reproduction in the sand-dwelling lizard, Uma inornata. Herpetologica 21 (1), 39–55 (1965).

    Google Scholar 

  • Mayhew, W. W.: Personal communication (1971).

  • McCullough, E. M., Porter, W. P.: Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 52 (6), 1008–1015 (1971).

    Google Scholar 

  • McGinnis, S. M., Dickson, L. L.: Thermoregulation in the desert iguana, Dipsosaurus dorsalis. Science 156, 1757 (1967).

    PubMed  Google Scholar 

  • McNab, B. K., Morrison, P.: Body temperatures and metabolism in subspecies of Peromyscus from Arid and Mesic environments. Ecol. Monographs 33, 63–82 (1963).

    Google Scholar 

  • Minnich, J. E.: Evaporative water loss from the desert iguana, Dipsosaurus dorsalis. Copeia 3, 575–578 (1970a).

    Google Scholar 

  • Minnich, J. E.: Water and electrolyte balance of the desert iguana, Dipsosaurus dorsalis, in its natural habitat. Comp. Biochem. Physiol. 35, 921–933 (1970b).

    Google Scholar 

  • Minnich, J. E., Shoemaker, V. H.: Diet, behavior and water turnover in the desert iguana, Dipsosaurus dorsalis. Amer. Mid. Nat. 84 (2), 496–509 (1970).

    Google Scholar 

  • Moberly, W. R.: Hibernation in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 36, 152–160 (1962).

    Google Scholar 

  • Nagy, K. A.: Seasonal metabolism of water, energy and electrolytes in a field population of desert lizards, Sauromalus obesus. Ph. D. Thesis, UCR (1971).

  • Norris, K. S.: The ecology of the desert iguana, Dipsosaurus dorsalis. Ecology 34 (2), 265–287 (1953).

    Google Scholar 

  • Norris, K. S.: Color adaptation in desert reptiles and its thermal relationships. Symposium on Lizard Ecology, p. 162–229. Columbia, Mo.: U. Missouri Press 1967.

    Google Scholar 

  • Pearman, G. I., Weaver, H. L., Tanner, C. B.: Boundary layer heat transport coefficients under field conditions. Ag. Meteor. Vol. 10, No. 1–2, 83–92 (1972).

    Google Scholar 

  • Porter, W. P.: Solar radiation through the living body walls of vertebrates with emphasis on desert reptiles. Ecol. Mono. 37, 273–296 (1967).

    Google Scholar 

  • Porter, W. P., Gates, D. M.: Thermodynamic equilibria of animals with environment. Ecological Monographs 39, 245–270 (1969)

    Google Scholar 

  • Prosser, C. L., Brown, F. A., Jr.: Comparative animal physiology, 2nd ed., p. 688. Philadelphia: Saunders 1962.

    Google Scholar 

  • Regal, P., J.: Voluntary hypothermia in reptiles, Science 155, 1551–1553 (1967).

    PubMed  Google Scholar 

  • Schmidt-Nielsen, K., Dawson, T. J., Hammel, H. T., Hinds, O., Jackson, O. C.: The jackrabbit — a study in its desert survival. Hvalradets Skrifter No. 48, 125–142 (1965).

  • Scholander, P. F., Hock, R., Walters, V., Johnson, F., Bruibs, L.: Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. Woods Hole 99, 237–258 (1950).

    Google Scholar 

  • Sellers, W. D.: Physical climatology. Chicago: Univ. Chicago Press 1965.

    Google Scholar 

  • Stearns, C. R.: Micrometeorological studies on the coastal desert of Peru. Ph. D. Thesis, University of Wisconsin, Madison, Wisconsin (1967).

    Google Scholar 

  • Stewart, D. W., Lemon, E. R.: The energy budget at the earth's surface. Interior Report 69-3, U.S. Dept. of Agriculture and Cornell University (1969).

  • Stolwijk, J.: A mathematical model of physiological temperature regulation in man, NASA Rept. CR-1855 (1971).

  • Swinbank, W. C.: Long-wave radiation from clear skies. Quart. J. Roy. Met. Soc. 89, 339 (1963).

    Google Scholar 

  • Swinbank, W. C.: The exponential wind profile. Quart. J. Roy. Met. Soc. 90, 119 (1964).

    Google Scholar 

  • Templeton, J. R.: Respiration and water loss at the higher temperatures in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 33, 136–145 (1960).

    Google Scholar 

  • Templeton, J. R.: Reptiles, in comparative physiology of thermoregulation, G. C. Whittow, Ed. London-New York: Academic Press 1970.

    Google Scholar 

  • Tibbals, E. C., Carr, E. K., Gates, O. M., Kreith, F.: Radiation and convection in conifers. Amer. J. Bot. 51 (5), 529–538 (1965).

    Google Scholar 

  • Van Wijk, W. R., Ed.: Physics of plant environment. Amsterdam: North Holland Publishing 1963.

    Google Scholar 

  • Wathen, P., Mitchell, J. W., Porter, W. P.: Theoretical and experimental studies of energy exchange from jackrabbit ears and cylindrically shaped appendages. Biophysiol. J. 11, 1030–1047 (1971).

    Google Scholar 

  • Weathers, W. W.: Physiological thermoregulation in the lizard, Dipsosaurus dorsalis. Copeia No. 3, 549–557 (1970).

  • Whitford, W. G., Hutchinson, H.: Body size and metabolic rate in salamanders. Physiol. Zool. 40, (2), 127–133 (1967).

    Google Scholar 

  • Wissler, E. H.: Comparison of computed results obtained from two mathematical models—a simple 14-node model and a complex 250-node model, J. de Physiologie 63, 455–458 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, W.P., Mitchell, J.W., Beckman, W.A. et al. Behavioral implications of mechanistic ecology. Oecologia 13, 1–54 (1973). https://doi.org/10.1007/BF00379617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379617

Keywords

Navigation