Skip to main content
Log in

Biological decomposition efficiency in different woodland soils

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The decomposition (meaning disappearance) of different leaf types and artificial leaves made from cellulose hydrate foil was studied in three forests — an alluvial forest (Ulmetum), a beech forest on limestone soil (Melico-Fagetum), and a spruce forest in soil overlying limestone bedrock.

Fine, medium, and coarse mesh litter bags of special design were used to investigate the roles of abiotic factors, microorganisms, and meso- and macrofauna in effecting decomposition in the three habitats. Additionally, the experimental design was carefully arranged so as to provide information about the effects on decomposition processes of the duration of exposure and the date or moment of exposure.

  1. 1.

    Exposure of litter samples oor 12 months showed:

  2. a)

    Litter enclosed in fine mesh bags decomposed to some 40–44% of the initial amount placed in each of the three forests. Most of this decomposition can be attributed to abiotic factors and microoganisms.

  3. b)

    Litter placed in medium mesh litter bags reduced by ca. 60% in alluvial forest, ca. 50% in beech forest and ca. 44% in spruce forest.

  4. c)

    Litter enclosed in coarse mesh litter bags was reduced by 71% of the initial weights exposed in alluvial and beech forests; in the spruce forest decomposition was no greater than observed with fine and medium mesh litter bags. Clearly, in spruce forest the macrofauna has little or no part to play in effecting decomposition.

  5. 2.

    Sequential month by month exposure of hazel leaves and cellulose hydrate foil in coarse mesh litter bags in all three forests showed that one month of exposure led to only slight material losses, they did occur smallest between March and May, and largest between June and October/November.

  6. 3.

    Coarse mesh litter bags containing either hazel or artificial leaves of cellulose hydrate foil were exposed to natural decomposition processes in December 1977 and subsampled monthly over a period of one year, this series constituted the From-sequence of experiments. Each of the From-sequence samples removed was immediately replaced by a fresh litter bag which was left in place until December 1978, this series constituted the To-sequence of experiments. The results arising from the designated From- and To-sequences showed:

  7. a)

    During the course of one year hazel leaves decomposed completely in alluvial forest, almost completely in beech forest but to only 50% of the initial value in spruce forest.

  8. b)

    Duration of exposure and not the date of exposure is the major controlling influence on decomposition in alluvial forest, a characteristic reflected in the mirror-image courses of the From- and To-sequences curves with respect to the abscissa or time axis. Conversely the date of exposure and not the duration of exposure is the major controlling influence on decomposition in the spruce forest, a characteristic reflected in the mirror-image courses of the From-and To-sequences with respect to the ordinate or axis of percentage decomposition.

  9. c)

    Leaf powder amendment increased the decomposition rate of the hazel and cellulose hydrate leaves in the spruce forest but had no significant effect on their decomposition rate in alluvial and beech forests. It is concluded from this, and other evidence, that litter amendment by leaf fragments of phytophage frass in sites of low biological decomposition activity (eg. spruce) enhances decomposition processes.

  10. d)

    The time course of hazel leaf decomposition in both alluvial and beech forest is sigmoidal. Three s-phases are distinguished and correspond to the activity of microflora/microfauna, mesofauna/macrofauna, and then microflora/microfauna again. In general, the sigmoidal pattern of the curve can be considered valid for all decomposition processes occurring in terrestrial situations. It is contended that no decomposition (=disappearance) curve actually follows an e-type exponential function. A logarithmic linear regression can be constructed from the sigmoid curve data and although this facilitates inter-system comparisons it does not clearly express the dynamics of decomposition.

  11. 4.

    The course of the curve constructed from information about the standard deviations of means derived from the From- and To-sequence data does reflect the dynamics of litter decomposition. The three s-phases can be recognised and by comparing the actual From-sequence deviation curve with a mirror inversion representation of the To-sequence curve it is possible to determine whether decomposition is primarily controlled by the duration of exposure or the date of exposure. As is the case for hazel leaf decomposition in beech forest intermediate conditions can be readily recognised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

alluvial forest

B:

beech forest (EF)

S:

spruce forest (U1)

fs:

From-sequence

ts:

To-sequence

fg:

fine gauze

mg:

medium gauze

cg:

coarse gauze

w.p.b.:

with pulverised beech leaves

w.p.s.:

with pulverised spruce needles

w.p.h.:

with pulverised hay

w.a.:

without amendment

x :

sample mean of x

s :

standard deviation

s :

mean of several standard deviations

n :

number of samples

t :

t-test

F :

F-test

n.s.:

not significant

*:

significant at the 5% level

**:

significant at the 1% level

***:

significant at the 0.1% level

E* :

‘escapee’ significant at the 5% level (after Doerfel in Renner 1970)

E** :

‘escapee’ significant at the 1% level

References

  • Albert AM (1977) Biomasse von Chilopoden in einem Buchenaltbestand des Solling. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 93–101

    Google Scholar 

  • Albert R (1976) Zusammensetzung und Vertikalverteilung der Spinnenfauna in Buchenwäldern des Solling. Faun-ökol Mitt 5:65–80

    Google Scholar 

  • Albert R (1977) Struktur und Dynamik der Spinnenpopulationen in Buchenwäldern des Solling. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 83–91

    Google Scholar 

  • Altmüller R (1977) Ökoenergetische Untersuchungen an Dipterenpopulationen im Buchenwald. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 133–138

    Google Scholar 

  • Altmüller R (1979) Untersuchungen über den Energieumsatz von Dipterenpopulationen im Buchenwald (Luzulo-Fagetum). Pedobiol 19:245–278

    Google Scholar 

  • Anderson JM (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L) leaf litter in two deciduous woodland soils. I. Breakdown, leaching and decomposition. Oecologia (Berlin) 12:251–274

    Google Scholar 

  • Anderson JM (1975) Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J Anim Ecol 44 (2):475–496

    Google Scholar 

  • Berger-Landefeldt U (1960) Zum Cellulose-Abbau in Böden unter verschiedenem Bewuchs. Oikos 11:311–324

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant and Soil IX (2):179–185

    Google Scholar 

  • Dongus H (1972) Oberflächenformen — Naturräumliche Einheiten. In: Der Stadt- und Lankreis Ulm, Amtliche Kreisbeschreibung. Allgemeiner Teil, Ulm: Süddeutsche Verlagsgemeinschaft mbH, pp 38–63

    Google Scholar 

  • Dunger W (1956) Untersuchungen über Laubstreuzersetzung durch Collembolen. Zool Jahrb Syst 84:75–98

    Google Scholar 

  • Dunger W (1958) Über die Zersetzung der Laubstreu durch die Boden-Makrofauna im Auenwald. Zool Jahrb Syst 86:139–180

    Google Scholar 

  • Edwards CA, Heath GW (1963) The role of soil animals in breakdown of leaf material. In: Soil organisms. Doeksen J, Drift J van der (eds) Amsterdam: North Holland, pp 76–84

    Google Scholar 

  • Ellenberg H (ed) (1967) Internationales Biologisches Programm. Beiträge der Bundesrepublik Deutschland. DFG, Bad Godesberg, p 28

    Google Scholar 

  • Ellenberg H (1971) Integrated experimental ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Stuttgart: Ulmer

    Google Scholar 

  • Fogel R, Cromack KC Jr (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot Vol 55:1632–1640

    Google Scholar 

  • Funke W (1971) Food and Energy Turnover of Leaf-eating Insects and their Influence on Primary Production. Ecol Studies 2:81–93

    Google Scholar 

  • Funke W (1973) Rolle der Tiere in Waldökosystemen des Solling. In: Ökosystemforschung, Ellenberg H (ed) Springer, Berlin Heidelberg New York, pp 143–174

    Google Scholar 

  • Funke W (1977) Das Zoologische Forschungsprogramm im Sollingprojekt. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 49–58

    Google Scholar 

  • Funke W (1979) Wälder, Objekte der Ökosystemforschung. Jber naturwiss Ver Wuppertal 32:45–50

    Google Scholar 

  • Grimm R (1973) Zum Energieumsatz phytophager Insekten im Buchenwald. I. Oecologia (Berlin) 11:187–262

    Google Scholar 

  • Grimm R (1977) Der Energieumsatz der Arthropodenpopulationen im Ökosystem Buchenwald. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 125–131

    Google Scholar 

  • Grimm R, Funke W, Schauermann J (1975) Minimalprogramm zur Ökosystemanalyse: Untersuchungen an Tierpopulationen in Wald-Ökosystemen. Verhdl Ges Ökol Erlangen 1974. The Hague: Junk, pp 77–87

    Google Scholar 

  • Hanlon RDG, Anderson JM (1979) The Effects of Collembolan Grazing on Microbial Activity in Decomposing Leaf Litter. Oecologia (Berlin) 38:93–99

    Google Scholar 

  • Hartmann P (1979) Biologisch-ökologische Untersuchungen an Staphylinidenpopulationen verschiedener Ökosysteme des Solling. Dissertation, Göttingen

  • Heath GW, Arnold MK, Edwards CA (1966) Studies in leaflitter breakdown. I. Breakdown rates of leaves of different species. Pedobiologia 6:1–12

    Google Scholar 

  • Herlitzius R (1977) Untersuchungen zum Streuabbau in Kalk- und Sauerhumus-Buchenwäldern. Verhdl Ges Ökol Göttingen 1976. The Hague: Junk, pp 161–170

    Google Scholar 

  • Herlitzius R, Herlitzius H (1977) Streuabbau in Laubwäldern. Oecologia (Berlin) 30:147–171

    Google Scholar 

  • Koehler H (1977) Nathrungsspektrum und Nahrungskonnex von Pterostichus oblongopunctatus (F.) und Pterostichus metallicus (F.) (Coleoptera, Carabidae). Verhdl Ges Ökol Göttingen 1976. The Hague: Junk, pp 103–111

    Google Scholar 

  • Kubiena WL (1953) Bestimmungsbuch und Systematik der BÖden Europas. Stuttgart: Enke

    Google Scholar 

  • Kurcheva GF (1964) Wirbellose Tiere als Faktor der Zersetzung von Waldstreu. Pedobiologia 4:7–30

    Google Scholar 

  • Kurcheva GF (1967) The influence of the increased abundance and the moistening on the rate of oak litter decomposition (in Russ). Pedobiologia 7:228–238

    Google Scholar 

  • Minderman G (1968) Addition decomposition and accumulation of organic matter in forests. J Ecol 56:355–362

    Google Scholar 

  • Minderman G, Daniëls L (1967) Colonization of newly fallen leaves by micro-organisms. In: Progress in Soil Biology, Graff O, Satchell JE (eds), Braunschweig: Vieweg, pp 3–9

    Google Scholar 

  • O'Connor FB (1967) The Enchytraeidae. in: Soil Biology, Burges A, Raw F (eds). Academic Press, London New York, pp 213–257

    Google Scholar 

  • Prusinkiewicz Z, Bigos M (1978) Rhythmicity of accumulation and decomposition of forest litter in three mixed forest stands on the soils with different types of forest floor. Ekol pol 26 (3):325–345

    Google Scholar 

  • Reise K, Weidemann G (1975) Dispersion of predatory forest floor arthropods. Pedobiologia 15:106–128

    Google Scholar 

  • Renner E (1970) Mathematisch statistische Methoden in der praktischen Anwendung. Berlin-Hamburg: Parey

    Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Soil Biology, Burges A, Raw F (eds) Academic Press: London New York, pp 259–322

    Google Scholar 

  • Schauermann J (1973) Zum Energieumsatz phytophager Insekten im Buchenwald. II. Die produktionsbiologische Stellung der Rüsselkäfer (Curculionidae) mit rhizophagen Larvenstadien. Oecologia (Berlin) 13:313–350

    Google Scholar 

  • Schaucrmann J (1977) Zur Abundanz- und Biomassendynamik der Tiere in Buchenwäldern des Solling. Verhadl Ges Ökol Göttingen 1976. The Hague: Junk, pp 113–124

    Google Scholar 

  • Scheffer F, Schachtschabel P (1979) Lehrbuch der Bodenkunde. Stuttgart: Enke

    Google Scholar 

  • Scherner ER (1977) Struktur und Dynamik der Avifauna des Sollings. Verhdl Ges Ökol Göttingen 1976. The Hague: Junk, pp 145–160

    Google Scholar 

  • Schuler G (1973) Zur Stratigraphie und Lagerung des Tertiärs auf dem Oberen Eselsberg nördlich Ulm/Do. Ergebnisse der Baugrunderkundung für den Universitätsneubau. Jber u. Mitt oberrh geol Ver (N.F. 55), pp 159–181

  • Straub S (1979) Qualitativ — Quantitative Untersuchungen an Coleopterenpopulationen in Laubwäldern. Staatsexamensarbeit, Ulm

  • Suffling R, Smith DW (1974) Litter decomposition studies using mesh bags: spillage inaccuracies and effects of repeated artificial drying. Can J Bot Vol 52:2157–2163

    Google Scholar 

  • Thiede U (1977) Quantitative Untersuchungen an Insektenpopulationen in Fichtenforsten des Solling. Verhdl Ges Ökol Göttingen 1976, The Hague: Junk, pp 139–144

    Google Scholar 

  • Thiele HU (1968) Bodentiere und Bodenfruchtbarkeit. Organischer Landbau. Internationale Fachzeitschrift für Biologie und Technik im Landbau 1+2, 6–8, 29–31

  • Twinn DC (1974) Nematodes. In: Biology of Plant Litter Decomposition. Dickinson CH, Pugh GJF (eds). Academic Press, London New York, pp 421–465

    Google Scholar 

  • Ulrich B, Mayer R, Khanna PK, Seekamp G, Fassbender HW (1977) Input, Output und interner Umsatz von chemischen Elementen bei einem Buchen- und einem Fichtenbestand. Verhdl Ges Ökol Göttingen 1976. The Hague: Junk, pp 17–28

    Google Scholar 

  • Volz P (1954) Über die Rolle der Tierwelt in Waldböden, besonders beim Abbau der Fallstreu. Z Pflanzenern, Düngng, Bodenk 64:230–237

    Google Scholar 

  • Weber E (1972) Grundriß der biologischen Statistik. Stuttgart: G Fischer

    Google Scholar 

  • Weidemann G (1971) Food and energy turnover of predatory arthropods of the soil surface. Ecol Studies 2:110–118

    Google Scholar 

  • Weidemann G (1977) Struktur der Zoozönose im Buchenwald-Ökosystem des Solling. Verhdl Ges Ökol Göttingen 1976. The Hague: Junk, p 59–73

    Google Scholar 

  • Weidemann G (1978) Über die Bedeutung von Insekten im Ökosystem Laubwald. Mitt dtsch Ges angew Ent 1:196–204

    Google Scholar 

  • Williams ST, Gray TRG (1974) Decomposition of Litter on the Soil Surface. In: Biology of Plant Litter Decomposition. Dickinson CH, Pugh GJF (eds) Academic Press, London New York, pp 611–632

    Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology 47:194–201

    Google Scholar 

  • Witkamp M, Olson JS (1963) Breakdown of confined and nonconfined oak litter. Oikos 14 (2):138–147

    Google Scholar 

  • Wittich W (1943) Untersuchungen über den Verlauf der Streuzersetzung auf einem Boden mit Mullzustand II. Forstarchiv 19:1–18

    Google Scholar 

  • Wittich W (1953) Untersuchungen über den Verlauf der Streuzersetzung auf einem Boden mit starker Regenwurmtätigkeit. Schriftenr Forst Fak Göttingen 9:1–33

    Google Scholar 

  • Wood TG (1974) Field investigations on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors. Pedobiologia 14:343–371

    Google Scholar 

  • Zlotin RI (1967) Die massenhafte Vermehrung des grünen Eichenwicklers als Stimulator des biologischen Kreislaufs in Eichenwäldern. In: Struktur und funktions-bio-geo-zönotische Rolle der lebenden Tierbevölkerung des Bodens (in Russ). Moskau: MOIP

    Google Scholar 

  • Zlotin RI (1971) Invertebrate animals as a factor of the biological turnover. IV. Colloq Intern de la Fauna du Sol Dijon 1970. Paris: Institut nationale de la recherche agronomique

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herlitzius, H. Biological decomposition efficiency in different woodland soils. Oecologia 57, 78–97 (1983). https://doi.org/10.1007/BF00379565

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379565

Keywords

Navigation