Skip to main content
Log in

Two magmatic series with island arc affinities within the vourinos ophiolite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Within the Vourinos ophiolite evidence of two magmatic series has been preserved in cognate cumulates and in effusive and hypabyssal rocks, which constitute the earlier Krapa sequence and the younger Asprokambo sequence. The Asprokambo dyke basic magmas which are poor in incompatible elements and relatively Ni and Cr rich, bear some resemblance to very low Ti basalts (transitional to boninites) found in subduction related arcs or interarc basins. Krapa series magmas from sills, massive and pillow lavas are best equated with low-K tholeiites of island arc suites. Compositions of Al- and Ti- poor Cpx in lavas from both series are comparable to those in island arc basalts, the Asprokambo Cpx being richer in Ca and Cr than those from Krapa.

The large volume of cumulates from the Krapa sequence displays the following crystallization order: Ol±Sp, Cpx, Pl±Opx, Mt. Periodic influx of fresh magma batches into the magma chamber occurred mainly during the formation of the lower cumulates (wehrlite, Ol-clinopyroxenite and melagabbro). The upper cumulates, gabbronorite and leucogabbronorite with minor Mt-bearing gabbronorite, crystallized in the upper levels of a magma chamber which became progressively smaller with time. In the Asprokambo sequence, Ol+Sp, Opx, Cpx, PI and Amph are the successively crystallizing phases. The ortho to heteradcumulates consist of websterite, Pl-websterite, gabbronorite, amphibole bearing leuconorite, diorite and granophyre. In cumulates, especially in the lower Krapa sequence, significant subsolidus reaction was probably induced by the persistence of high geothermal gradients linked to continuous magmatism. Petrological features indicate that the evolution of the Krapa series is more compatible with an intermediate fractional/equilibrium crystallization history in an initially open system, whereas nearly perfect fractional crystallization in closed system may have occurred in the small Asprokambo magma chambers. Chemical variations in the lavas of both series can be explained in terms of crystallization of the observed cumulates. Significantly, the Asprokambo intrusives have igneous Mg-hornblende and vanadium bearing, chromian, aluminous titaniferous magnetite, crystallization of which is responsible for the calcalkaline evolutionary trend of these rocks. Major and trace element modelling necessitates a two stage model for the petrogenesis of the Vourinos parental melts, involving high-degree remelting of previously depleted mantle sources favoured by the influx of subduction derived hydrous fluids. The primary magmas parental to the Krapa and Asprokambo series could have been derived respectively by 20 and 30% equilibrium partial fusion of variably depleted lherzolitic sources, leaving residua having a harzburgitic to dunitic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich JB, Tieh TT, Scott RB (1981) Alteration of remnant arc debris, site 448, Palau-Kyushu ridge, Philippine sea, Deep Sea Drilling Project Leg 59. in Kroenke L, Scott R et al., Init Repts DSDP, 59. Washington (US Gov Printing Office), 737–742

    Google Scholar 

  • Aoki KI, Shiba I (1973) Pyroxenes from lherzolite inclusions of Itinomegata, Japan, Lithos 6:41–51

    Google Scholar 

  • Arculus RG (1978) Mineralogy and petrology of Grenada, Lesser Antilles island arc. Contrib Mineral Petrol 65:413–424

    Google Scholar 

  • Arth JG (1976) Behaviour of trace elements during magmatic processes. A summary of theoretical models and their applications. Journ Research US Geol Surv 4:41–47

    Google Scholar 

  • Ayrton S (1968) Structures isoclinales dans les péridotites du Mont Vourinos (Macédoine grecque). Un exemple de déformation des roches ultrabasiques. Schweiz Mineral Petrol Mitt 48: 733–750

    Google Scholar 

  • Bailey EH, Blake MC Jr (1974) Major chemical characteristics of mesozoic Coast range ophiolite in California. Journ Research US Geol Surv 2:637–656

    Google Scholar 

  • Bébien J, Ohnenstetter D, Ohnenstetter M, Vergely P (1980) Diversity of the Greek ophiolites: birth of oceanic basins in transcurrent systems. Ofioliti, Special issue, Tethyan ophiolites, (Rocci ed) 2:129–177

    Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M (1979) Geochemical discrimination between ocean floor and island arc tholeiites; application to some ophiolites. Can J Earth Sci 16:1874–1882

    Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element of Corsican ophiolites. Contrib Mineral Petrol 64:11–31

    Google Scholar 

  • Beccaluva L, Macciotta G, Savelli C, Serri G, Zeda O (1980) Geochemistry and K/Ar ages of volcanics dredged in the Philippine sea (Mariana, Yap, and Palau trenches and Parece Vela Basin). AGU Seatar volume, 247–268

  • Bingöl AF (1978) Pétrologie du massif ophiolitique de Pozanti-Karsanti (Taurus cilicien, Turquie): étude de la partie orientale. Thèse 3ème cycle, Univ de Strasbourg, p 227

  • Boudier F (1978) Structure and petrology of the Lanzo peridotite massif (Piedmont Alps). Geol Soc Am Bull 89:1574–1591

    Google Scholar 

  • Brunn JH (1956) Etude géologique du Pinde septentrional et de la Macédoine occidentale. Ann Géol Pays Hellén. 7, p 358

    Google Scholar 

  • Cakir U (1978) Pétrologie du massif ophiolitique de Pozanti-Karsanti (Taurus cilicien, Turquie): étude de la partie centrale. Thèse 3ème cycle, Univ de Strasbourg, p 251

  • Cann JR (1969) Spilites from the Carlsberg Ridge, Indian Ocean. J Petrol 10:1–19

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280:550–553

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1980) Petrographie dissimilarities between ophiolitic and ocean-floor basalts. In: Ophiolites (A. Panayiotou ed), 182–192

  • Cawthorn RG (1976a) Some chemical controls on igneous amphibole compositions. Geochim Cosmochim Acta 40:1319–1328

    Google Scholar 

  • Cawthorn RG (1976b) Calcium-poor pyroxene reaction relations in calc-alkaline magmas. Am Min 61:907–912

    Google Scholar 

  • Cawthorn RG, Davies G, Clubley-Armstrong A, McCarthy TS (1981) Sills associated with the Bushveld Complex, South Africa: an estimate of the parental magma composition. Lithos 14:1–15

    Google Scholar 

  • Church WR, Riccio L (1977) Fractionation trends in the Bay of Islands ophiolite of Newfoundland: polycyclic cumulate sequences in ophiolites and their classification. Can J Earth Sci 14:1156–1165

    Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Google Scholar 

  • Duncan RA, Green DH (1980) Role of multistage melting in the formation of oceanic crust, Geology 8:22–26

    Google Scholar 

  • Elthon DL, Stern CR (1978) Metamorphic petrology of the Sarmiento ophiolite complex, Chile. Geology 6:464–468

    Google Scholar 

  • Ernst WG, Piccardo GB (1979) Petrogenesis of some Ligurian peridotites — I. Mineral and bulk-rock chemistry. Geochim Cosmochim Acta 43:219–237

    Google Scholar 

  • Ewart A (1976) A petrological study of the younger Tongan andesites and dacites, and the olivine tholeiites of Niua Fo' ou island, SW Pacific, Contrib Mineral Petrol 58:1–21

    Google Scholar 

  • Ewart A, Brothers RN, Mateen A (1977) An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. J Volcanol Geotherm Res 2:205–250

    Google Scholar 

  • Gass IG, Smewing JD (1973) Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos massif, Cyprus. Nature 242:26–29

    Google Scholar 

  • Gill JB (1976) Composition and age of Lau Basin and Ridge volcanic rocks: Implications for evolution on an interarc basin and remnant arc. Geol Soc Am Bull 87:1384–1395

    Google Scholar 

  • Green DH (1976) Experimental testing of “Equilibrium” partial melting of peridotite under water saturated, high-pressure conditions. Can Mineral 14:255–268

    Google Scholar 

  • Gruppo di Lavoro sulle Ofioliti Mediterranee (1977) I complessi ofiolitici e le unita cristalline della Corsica Alpina. Ofioliti 2:265–324

    Google Scholar 

  • Hamlyn PR, Bonatti E (1980) Petrology of mantle-derived ultramafics from the Owen fracture zone, northwest Indian ocean: implications for the nature of the oceanic upper mantle. Earth Planet Sci Lett 48:65–79

    Google Scholar 

  • Harkins ME, Green HW II, Moores EM (1980) Multiple intrusive events documented from the Vourinos complex, Northern Greece. Am J Sci 280-A: 284–295

    Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implication for their source. Geochim Cosmochim Acta 46:2099–2115

    Google Scholar 

  • Huebner JS (1980) Pyroxene phase equilibria at low pressure. In: Prewitt CT (ed) Pyroxenes. Mineral Soc Amer Reviews in Mineralogy 7:213–288

  • Huppert HE, Sparks RSJ (1980) Restrictions on the compositions of mid-ocean ridge basalts: a fluid dynamical investigation. Nature 286:46–48

    Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator, Part I-theory. Can J Earth Sci 2:648–672

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator, Part 2 — Petrologic applications. Can J Earth Sci 4:71–103

    Google Scholar 

  • Jackson ED, Green HW, Moores EM (1975) The vourinos ophiolite, Greece: Cyclic units of lineated cumulates overlying harzburgite tectonite. Geol Soc Am Bull 86:390–398

    Google Scholar 

  • Jaques AL (1981) Petrology and petrogenesis of cumulate peridotites and gabbros from the Marum ophiolite complex, Northern Papua New Guinea. J Petrol 22:1–40

    Google Scholar 

  • Juteau T (1975) Les ophiolites des nappes d'Antalya (Taurides occidentales, Turquie); pétrologie d'un fragment de l'ancienne croûte océanique téthysienne. Mém Sc de la T 32, p 692

    Google Scholar 

  • Juteau T, Whitechurch H (1980) The magmatic cumulates of Antalya (Turkey): evidence of multiple intrusions in an ophiolitic magma chamber. In: Panayiotou A (ed) Ophiolites, 377–391

  • Komatsu M (1980) Clinoenstatite in volcanic rocks from the Bonin islands. Contrib Mineral Petrol 74:329–338

    Google Scholar 

  • Kornprobst J, Ohnenstetter D, Ohnenstetter M (1981) Na and Cr contents in clinopyroxenes from peridotites; a possible discriminant between “sub-continental” and “sub-oceanic” mantle. Earth Planet Sci Lett 53:241–254

    Google Scholar 

  • Kuroda N, Shiraki K, Urano H (1978) Boninite as a possible calcalkaline primary magma. Bull Volcanol 41:563–575

    Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Amer Min 63:1023–1052

    Google Scholar 

  • Leeman WP (1976) Petrogenesis of McKinney (Snake River) olivine tholeiite in light of rare-earth element and Cr/Ni distribution. Geol Soc Am Bull 87:1582–1586

    Google Scholar 

  • McBirney AR Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20:487–554

    Google Scholar 

  • Mattey DP, Marsh NG, Tarney J (1981) The geochemistry, mineralogy and petrology of basalts from the West Philippine and Parace Vela basins and from the Palau-Kyushu and West Mariana ridges, Deep Sea Drilling Project Leg 59. In: Kroenke L, Scott R et al, Init Repts DSDP, 59, Washington (US Govt Printing Office), 753–800

    Google Scholar 

  • Meier A (1980) Primitive arc volcanism and a boninite series: examples from western Pacific islands arcs. In: AGU, seatar volume, 269–282

  • Miyashiro A (1977) Subduction-zone ophiolites and island-arc ophiolites. In: Saxena SK and Bhattacharji (eds) “Energetics of Geological Processes”. 188–213

  • Montigny R (1975) Géochimie comparée des cortèges de roches océaniques et ophiolitiques. Problème de leur genèse. Thèse Doctorat d'état. Univ Paris VII, p 288

  • Moores EM (1969) Petrology and structure of the Vourinos ophiolitic complex of Northern Greece. Geol Soc Amer spec paper, 118, p 74

    Google Scholar 

  • Moores EM, Vine JF (1971) The Troodos massif (Cyprus) and other ophiolites as oceanic crust; evaluation and implications. Phil Trans Roy Soc London, A, 268:443–466

    Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim. Acta 38:757–775

    Google Scholar 

  • Noiret G, Montigny R, Allègre CJ (1981) Is the Vourinos complex an island arc ophiolite? Earth Planet Sci Lett 56:375–386

    Google Scholar 

  • O'Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503–507

    Google Scholar 

  • Ohnenstetter D, Ohnenstetter M, Paupy A, Rocci G (1979) La diversité des ophiolites: importance de la nature du fractionnement et conséquences métallogéniques. In: Besson M (ed) “Facteurs contrôlant les minéralisations sulfurées de nickel”. Mém BRGM 97:47–61

  • Ohnenstetter D, Ohnenstetter M, Rocci G (1975) tholeiitic cumulates in a high pressure metamorphic belt. Pétrologie 1:291–317

    Google Scholar 

  • Ottonello G, Piccardo GB, Ernst WG (1979) Petrogenesis of some Ligurian peridotites. II Rare earth element chemistry. Geochim Cosmochim Acta 43:1273–1284

    Google Scholar 

  • Pallister JS, Hopson CA (1981) Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J Geophys Res 86:2593–2644

    Google Scholar 

  • Parrot JF, Ricou LE (1976) Evolution des assemblages ophiolitiques au cours de l'expansion océanique. Cah ORSTOM, sér Géo 18:49–68

    Google Scholar 

  • Paupy A (1976) Nouvelles données sur un type de différenciation du magma ophiolitique: le massif du Vourinos (Grèce). Thèse 3ème cycle, Univ Nancy I, p 173

    Google Scholar 

  • Pearce JA (1975) Basalt geochemistry used to investigate past tectonic environment on Cyprus. Tectonophysics 25:41–68

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Google Scholar 

  • Pichon JF, Lys M (1976) Sur l'existence d'une série du Jurassique supérieur à Crétacé inférieur, surmontant les ophiolites, dans les collines de Krapa (massif de Vourinos, Grèce). CR Acad Sci, Paris D, 282:523–526

    Google Scholar 

  • Ridley WI (1977) The crystallization trends of spinels in Tertiary basalts from Rhum and Mull and their petrogenetic significance. Contrib Mineral Petrol 64:243–255

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Ross JV, Mercier JC, Ave Lallemant HG, Carter NL, Zimmerman J (1980) The Vourinos ophiolite complex, Greece: the tectonite suite. Tectonophysics 70:63–83

    Google Scholar 

  • Saunders AD, Tarney J, Marsh NG, Wood DA (1980) Ophiolites as ocean crust or marginal basin crust: a geochemical approach. In: Panayiotou A (ed) Oppiolites, 193–204

  • Scott RB (1981) Petrology and geochemistry of arc tholeiites on the Palau-Kyushu ridge, site 448, Deep Sea Drilling Project Leg 592. In: Kroenke L, Scott L et al, Init Pepts DSDP, 59. Washington (US Govt Printing Office), 681–692

    Google Scholar 

  • Sharaskin AY, Dobretsov NL, Soboley NV (1980) Marianites: the clinoenstatite bearing pillow-lavas associated with the ophiolite assemblage of Mariana trench. In: Panayiotou (ed) Ophiolites, 473–479

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Shiraki K, Kuroda N (1977) The boninite revisited. Tokyo Geogr Soc 86:34–50

    Google Scholar 

  • Smewing JD (1981) Mixing characteristics and compositional differences in mantle-derived melts beneath spreading axes: evidence from cyclically layered rocks in the ophiolite of north Oman. Journ Geophys Res 86:2645–659

    Google Scholar 

  • Smewing JD, Potts PJ (1976) Rare-earth abundances in basalts and metabasalts from the Troodos massif, Cyprus. Contrib Mineral Petrol 57:245–258

    Google Scholar 

  • Spray JG, Roddick JC (1980) Petrology and 40Ar/39Ar geochronology of some Hellenic sub-ophiolite metamorphic rocks. Contrib Mineral Petrol 72:43–55

    Google Scholar 

  • Stern C (1979) Open and closed system igneous fractionation within two Chilean ophiolites and their tectonic implication. Contrib Mineral Petrol 68:243–258

    Google Scholar 

  • Sun SS, Nesbitt RW (1978) Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6:689–693

    Google Scholar 

  • Sun SS, Nesbitt RW, Sharaskin AY (1979) Geochemical characteristics of Mid-ocean ridge basalts. Earth Planet Sci Lett 44:119–138

    Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrology 1:73–85

    Google Scholar 

  • Wilson RAM (1959) The geology of the Xeros-Troodos area. Geol Surv Depart Cyprus, Memoir 1, p 184

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beccaluva, L., Ohnenstetter, D., Ohnenstetter, M. et al. Two magmatic series with island arc affinities within the vourinos ophiolite. Contr. Mineral. and Petrol. 85, 253–271 (1984). https://doi.org/10.1007/BF00378104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00378104

Keywords

Navigation