Skip to main content
Log in

Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters: glycine betaine and amino acid pool variations

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Crassostrea virginica (Gmelin) collected in 1989 from several sites within the Chesapeake Bay have narrower salinity tolerances than conspecific oysters collected in 1989 from several Atlantic coast sites (Georgia to Cape Cod). The basis of this physiological difference appears to be the biochemical mechanisms that control cellular osmolality following salinity stress. When adapted to the same salinity, the amino acid pools of both gill and adductor muscles of Atlantic oysters are larger than those of Bay oysters and different in composition. The Atlantic oyster tissues rely primarily on taurine for salinity tolerance, while the Bay oyster tissues have relatively less taurine, depending instead upon alanine, glycine and proline to adapt to high salinity. In addition, Atlantic oyster gill and adductor have 10 to 25 times the glycine betaine concentrations of these tissues from Bay oysters, depending upor the salinity of acclimation. The betaine concentration varies with salinity in Atlantic oysters, but does not change in Bay oysters. The results suggest that these biochemical differences are the basis of the narrower salinity tolerance in Bay oysters. The biochemical differences may reflect genetic differences between Bay and Atlantic oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Andrews, J. D. (1966). Oyster mortalities studies in Virigina. V. Epizootiology of MSX, a protistan pathogen of oysters. Ecology 47: 19–31

    Google Scholar 

  • Baginski, R. M., Pierce, S. K. (1977). The time course of intracellular free amino acid accumulation in tissues of M. d. demissus. Comp. Biochem. Physiol. 57A: 407–422

    Google Scholar 

  • Baginski, R. M., Pierce, S. K., (1978). A comparison of amino acid accumulation during high salinity adaptation with anaerobic metabolism in the ribbed mussel, Modiolus demissus. J. exp. Zool. 203: 419–428

    Google Scholar 

  • Bagnasco, S., Balaban, R., Fales, H. M., Yang, Y., Berg, M. (1986). Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. biol. Chem. 261: 5872–5877

    Google Scholar 

  • Bishop, S. H., Ellis, L. L., Burcham, J. M. (1983). Amino acid metabolism in molluscs. In: Wilbur, K. M. (ed.) The Mollusca. Metabolic biochemistry and molecular biomechanics, Vol. 1. Academic Press, New York, p. 243–327

    Google Scholar 

  • Bishop, S. H., Greenwalt, D. E., Burcham, J. M. (1981). Amino acid cycling in ribbed mussel tissues subjected to hyperosmotic shock. J. exp. Zool. 215: 277–287

    Google Scholar 

  • Blunden, G., Cripps, A. L., Gordon, S. M., Mason, T. G., Turner, C. H. (1986). The characterisation and quantitative estimation of betaines in commercial sea weed extracts. Bot. Mar. 29: 155–160

    Google Scholar 

  • Briteaux-Gregoire, S., Duchateau-Bosson, Ch., Jeuniaux, Ch., Florkin, M. (1964). Constituants osmotiquement actifs des muscles adducteurs d'Ostrea edulis adaptee a l'eau de mer ou a l'eau saumatre. Archs int. Physiol. Biochim. 72: 267–275

    Google Scholar 

  • Chambers, S. T., Kunin, C. M. (1987). Isolation of glycine betaine and proline betaine from human urine. J. clin. Invest. 79: 731–737

    Google Scholar 

  • DeRidder, J. M., VanDam, K. (1973). The efflux of betaine from rat liver mitochondria, a possible regulating step in choline oxidation. Biochim. biophys. Acta 291: 557–563

    Google Scholar 

  • Dragolovich, J. (1991). The control of glycine betaine synthesis and its role in the cellular adaptation to hyperosmotic stress. Ph. D. Dissertation, University of Maryland, College Park, Maryland

    Google Scholar 

  • Flowers, T. J., Troke, P. F., Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121

    Google Scholar 

  • Ford, S. E., Haskin, H. H. (1982). History and epizootiology of Haplosporidium nelsoni (MSX), an oyster pathogen in Delaware Bay, 1957–1980. J. Invertebr. Path. 40: 118–141

    Google Scholar 

  • Hand, S. C., Stickle, W. B. (1977). Effects of tidal fluctuations of salinity on pericardial fluid composition in the American oyster, Crassostrea virginica. Mar. Biol. 42: 259–271

    Google Scholar 

  • Harlocker, S. L., Kapper, M. A., Greenwalt, D. E., Bishop, S. H. (1991). Phosphoenol carboxykinase from ribbed mussel gill tissue: reactivity with metal ions, kinetics and action of 3-mercaptopicolinic acid. J. exp. Zool. 257: 285–298

    Google Scholar 

  • Jolivet, Y., Hamelin, J., Larher, F. (1983). Osmoregulation in halophytic higher plants: the protective effect of glycine betaine and other related solutes against the oxalate destabilization of membranes in beet root cells. Z. Pfl. Physiol. 109: 171–180

    Google Scholar 

  • Krantz, G. E. (1991). Maryland oyster population status report. Maryland Department of Natural Resources, Annapolis, Maryland

    Google Scholar 

  • Landfald, B., Strom, A. (1986). Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bact. 165: 849–855

    Google Scholar 

  • Le Rudulier, D., Bernard, T. (1986). Salt tolerance in Rhizobium: a possible role for betaines. Fedn eur. microbiol. Soc. (FEMS) Microbiol. Rev. 39: 67–72

    Google Scholar 

  • Le Rudulier, D., Bernard, T., Goas, G. (1984a). Osmoregulation in Klebsiella pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, butryro-betaine and other related compounds. Can. J. Microbiol. 30: 299–305

    Google Scholar 

  • Le Rudulier, D., Strom, A. R., Dandekar, A. M., Smith, L. T., Valintine, R. C. (1984b). Molecular biology of osmoregulation. Science, N.Y. 224: 1064–1068

    Google Scholar 

  • Lynch, M. P., Wood, L. (1966). Effects of environmental salinity on free amino acids of Crassostrea virginica Gmelin. Comp. Biochem. Physiol. 19: 783–790

    Google Scholar 

  • McCormick, A., Paynter, K. T., Brodey, M. M., Bishop, S. H. (1986). Aspartate aminotransferases from ribbed mussel gill tissue: reactivity with β-L-Cysteinesulfinic acid and other properties. Comp. Biochem. Physiol. 84B: 163–166

    Google Scholar 

  • Newell, R. I. E. (1985). Physiological effects of the MSX parasite Haplosporidium nelsoni (Haskin, Stauber & Mackin) on the American oyster Crassostrea viriginica (Gmelin). J. Shellfish Res. 5: 91–95

    Google Scholar 

  • Pan, S., Moreau, R. A., Yu, C., Huang, A. H. C. (1981). Betaine accumulation and betaine aldehyde dehydrogenase in spinach leaves. Plant Physiol., Wash. 67: 1105–1108

    Google Scholar 

  • Paynter, K. T., Hoffmann, R. J., Ellis, L. L., Bishop, S. H. (1984). Partial characterization of the cytosolic and mitochondrial aspartate amino-transferase from ribbed mussel gill tissue. J. exp. Zool. 231: 185–197

    Google Scholar 

  • Paynter, K. T., Karam, G. A., Ellis, L. L., Bishop, S. H. (1985). Pyruvate dehydrogenase complex from ribbed mussel gill mitochondria. J. exp. Zool. 236: 251–533

    Google Scholar 

  • Pierce, S. K. (1970). The water balance of Modiolus (Mollusca: Bivalvia: Mytilidae): osmotic concentrations in changing salinities. Comp. Biochem. Physiol. 36: 521–533

    Google Scholar 

  • Pierce, S. K. (1982). Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biol. Bull. mar. biol. Lab., Woods Hole 163: 405–419

    Google Scholar 

  • Pierce, S. K., Politis, A. D. (1990). Ca2+-activated cell volume recovery mechanisms. Annu. Rev. Physiol. 52: 27–42

    Google Scholar 

  • Storey, R., Wyn Jones, R. G. (1977). Quaternary ammonium compounds in plants in relation to salt resistance. Phytochem. 16: 447–453

    Google Scholar 

  • Styrvold, O. B., Falkenberg, P., Landfald, B., Eshou, M. W., Bjornsen, T., Strom, A. R. (1986). Selection, mapping and characterization of osmoregulatory mutants of E. coli blocked in the choline-glycine betaine pathway. J. Bact. 165: 856–863

    Google Scholar 

  • Warren, M. K., Pierce, S. K., (1982). Two cell volume regulatory systems in the Limulus myocardium: an interaction of ions and and quaternary ammonium compounds. Biol. Bull. mar. biol. Lab., Woods Hole 163: 504–516

    Google Scholar 

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, N.Y. 217: 1212–1222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S.K., Rowland-Faux, L.M. & O'Brien, S.M. Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters: glycine betaine and amino acid pool variations. Marine Biology 113, 107–115 (1992). https://doi.org/10.1007/BF00367644

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367644

Keywords

Navigation