Skip to main content
Log in

Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x) P2O5 vitreous system

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The results and detailed discussion of an extensive experimental study of infrared spectra of the x (PbO)-(1−x)P2O5 vitreous system (x=0.3–0.75) together with a brief review of infrared spectra of phosphate compounds, are presented. Theoretical models employed in the interpretation of infrared spectra of glasses have been reviewed. The frequency ranges of various infrared bands belonging to PO 3−4 and P2O 4−7 , observed in different phosphate compounds, are discussed. The glassy and quenched samples were prepared from PbO and NH4H2PO4 by the rapid quenching technique. The infrared spectra of the constituents of the system, PbO and P2O5, in their polycrystalline and glassy forms, have been discussed. The intensity and wavenumbers of the infrared bands around 1600 and 3300 cm−1, assigned to the bending and stretching modes in H2O trapped by the hygroscopic glasses, have been followed for different compositions with x<0.5. The changes observed in these infrared bands established the role of water as an additional glass modifier. The intensity and frequency variations of the infrared bands have been followed through all the compositions for characteristic phosphate group frequencies including P=O, P-O-P stretching and bending modes and P-O bending mode. The results clearly suggest that the x(PbO)-(1−x)P2O5 system undergoes gradual structural changes from metaphosphate (x=0.5), to pyrophosphate (x=0.66) and to orthophosphate (x=0.75). The continuing presence of the infrared band, in varying intensity, in the region 1200–1280 cm−1 attributed to P=O, suggests that the glass-forming ability of the binary system is extendable at least up to x=0.66 composition, and that no complete rupture of P=O bond by Pb2+ takes place. The ionic character of the phosphate groups, P-O(−), PO 3−4 is well revealed by significant changes with the PbO content in the spectral features of the infrared bands around 1120 and 980 cm−1 respectively. The maximum intensity of the P-O(−) band at 1120 cm−1 for 55 mol% PbO suggests a partial breakdown of the covalent vitreous network of the phosphates and formation of a crystalline phase consisting of ionic groups PO 3−4 , P2O 2−6 and P2O 4−7 for PbO greater than 55 mol%. The observed pattern of variation in the intensity of the infrared bands in the 940–1080 cm−1 region attributed to the v3-mode in PO 3−4 , suggests a gradual transformation of PO 3−4 units to PO 3 groups in lead meta-phosphate glass and then their restoration to PO 3−4 groups of pyro- and ortho-phosphate quenched samples. The results indicate a gradual decrease in the number of bridging oxygens and increase in the resonance behaviour of non-bridging oxygens as the mole percentage of metal oxide (PbO) increases in the glass. The infrared spectra of several binary phosphate glasses have been reviewed in the context of the study of effect of the cation on the infrared spectra. It is found that the influence of the cation on the infrared spectra of phosphate glasses does not show any striking regularity. Theoretical calculations of these band frequencies were found to agree well only in the case of pure stretching (P=O and O-H) vibrations and pure bending (P-O-P and O-H) vibrations. The disagreement in the case of P-O(−), P-O-H and other modes of P-O-P groups, has been attributed to the mixed nature of modes occurring in glasses. The changes in the positions of the characteristic bands and their relative intensities are strongly dependent on the structural units and PbO content in the phosphate glasses and the results emphasize the role of PbO as a network modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P. Tarte, Spectrochim. Acta 18 (1962) 467.

    Article  CAS  Google Scholar 

  2. Idem, “Physics of Non-Crystalline Solids” (Elsevier Science, Amsterdam, 1964), p. 549.

    Google Scholar 

  3. R. A. Condrate, “Introduction to Glass Science” (Plenum Press, New York, 1972) p. 101.

    Book  Google Scholar 

  4. C. Dayanand, R. V. G. K. Sarma, G. Bhikshamaiah and M. Salagram, J. Non-Cryst. Solids 167 (1994) 122.

    Article  CAS  Google Scholar 

  5. James J. Hudgens and Steve W. Martin, J. Am. Ceram. Soc. 76 (1994) 1691.

    Article  Google Scholar 

  6. S. W. Martin, Eur. J. Solid State Inorg. Chem. 28 (1991) 163.

    CAS  Google Scholar 

  7. J. Wong, J. Non-Cryst. Solids 20 (1976) 83.

    Article  CAS  Google Scholar 

  8. G. J. Exarhos and W. M. Risen, Solid State Commun. 11 (1972) 755.

    Article  CAS  Google Scholar 

  9. G. J. Exarhos and W. M. Risen, Chem. Phys. Lett. 10 (1971) 484.

    Article  CAS  Google Scholar 

  10. C. Nelson and G. J. Exarhos, J. Chem. Phys. 71 (1979) 2739.

    Article  CAS  Google Scholar 

  11. B. C. Sales and L. A. Boatner, Science 226 (1984) 45.

    Article  CAS  Google Scholar 

  12. Idem, Mater. Lett. 2 (1984) 301.

    Article  CAS  Google Scholar 

  13. S. Chakraborty and A. Paul, J. Mater. Sci. Lett. 8 (1989) 1358.

    Article  CAS  Google Scholar 

  14. U. Selvaraj and K. J. Rao, J. Non-Cryst. Solids 104 (1988) 300.

    Article  CAS  Google Scholar 

  15. A. J. Bourdillon, F. Khumalo and J. Bordas, Philos. Mag. B37 (1978) 731.

    Article  Google Scholar 

  16. H. Rawson, “Inorganic Glass-Forming Systems” (Academic Press, London, 1967).

    Google Scholar 

  17. S. R. Elliott, “Physics of Amorphous Materials”, 2nd Edn (Longman, New York, 1990).

    Google Scholar 

  18. K. J. Rao, B. G. Rao and S. R. Elliott, J. Mater. Sci. 20 (1985) 1678.

    Article  CAS  Google Scholar 

  19. J. Robertson, Philos. Mag. B43 (1981) 497.

    Article  Google Scholar 

  20. P. J. Bray, A. E. Geissberger, F. Bucholtz and I. A. Harns, J. Non-Cryst. Solids 52 (1982) 45.

    Article  CAS  Google Scholar 

  21. P. Balta and E. Balta, “Introduction to the Physical Chemistry of the Vitreous State” (Abacus, Kent, 1976).

    Google Scholar 

  22. J. Wong and C. A. Angell, “Glass: Structure by Spectroscopy” (Dekker, New York, 1976) 461.

    Google Scholar 

  23. M. J. Weber, L. A. Boatner and B. C. Sales, J. Non-Cryst. Solids 74 (1985) 767.

    Article  Google Scholar 

  24. J. Reitzel, J. Chem. Phys. 23 (1955) 2407.

    Article  CAS  Google Scholar 

  25. I. Simmon, in “Modern Aspects of.the Vitreous State” (Butterworth, London, 1964).

    Google Scholar 

  26. I. Simon and H. O. McHahon, J. Chem. Phys. 21 (1953) 21.

    Google Scholar 

  27. A. H. Khafagy, M. A. Ewaida, A. A. Higazy, M. M. S. Ghoneim, I. Z. Hager and R. El-Bahnasawy, J. Mater Sci. 27 (1992) 1439.

    Article  Google Scholar 

  28. G. J. Su, N. Borrelli and A. R. Miller, Phys. Chem. Glasses 3(s) (1962) 167.

    CAS  Google Scholar 

  29. A. A. Higazy and B. Bridge, J. Mater. Sci. 20 (1985) 2345.

    Article  CAS  Google Scholar 

  30. A. Paul, “Chemistry of Glasses”, 2nd Edn (Chapman and Hall, London, 1990).

    Google Scholar 

  31. N. F. Borrelli and G. J. Su, Mater. Res. Bull 3 (1968) 181.

    Article  CAS  Google Scholar 

  32. U. Selvaraj and K. J. Rao, J. Non-Cryst. Solids 72 (1985) 315.

    Article  CAS  Google Scholar 

  33. K. Nakamoto, “Infrared spectra of Inorganic and Coordination Compounds” (and references therein). (Wiley-Interscience, New York, 1970) 117.

    Google Scholar 

  34. E. G. Kalbus, PhD thesis, Wisconsin University (1957).

  35. D. E. C. Corbridge and E. J. Lowe, J. Chem. Soc. Part I (1954) 493.

  36. Idem, ibid. Part IV (1954) 4555.

  37. C. K. Shih and G. J. Su, in “Proceedings of the 7th International Congress on Glass”, Brussels (1965) paper 48.

  38. Partridge, Chem. Eng. News 27 (1949) 214.

    Article  CAS  Google Scholar 

  39. N. B. Colthup, J. Opt. Soc. Am. 40 (1950) 397.

    Article  CAS  Google Scholar 

  40. F. A. Miller and C. H. Wilkins, Anal. Chem. 24 (1952) 1253.

    Article  CAS  Google Scholar 

  41. R. F. Bartholomew, J. Non-Cryst. Solids 7 (1972) 221.

    Article  CAS  Google Scholar 

  42. Wright and Hunter, J. Am. Chem. Soc. 69 (1947) 803.

    Article  CAS  Google Scholar 

  43. F. Albert Cotton and Geoffrey Wilkinson, “Advanced Inorganic Chemistry”, 5th Edn (Wiley, New York, 1988).

    Google Scholar 

  44. L. W. Daasch and D. C. Smith, Analyt. Chem. 23 (1951) 853.

    Article  CAS  Google Scholar 

  45. R. M. Almeida and J. D. Mackenzie, J. Non-Cryst. Solids 40 (1980) 535.

    Article  CAS  Google Scholar 

  46. G. Pannetier, S. Fenistein and G. D. Mariadasson, Bull. Soc. Chim. Fr. 701–705 (in French).

  47. N. T. McDevitt and W. L. Baun, Spectro. Chim. Acta 20 (1964) 799.

    Article  CAS  Google Scholar 

  48. N. N. Greenwood and E. J. F. Ross, “Index of Vibrational Spectra of Inorganic and Organometallic compounds”, Vol. 3 (Butterworth, New York, 1977) 867.

    Google Scholar 

  49. C. Dayanand, G. Bhikshamaiah and M. Salagram, Mater. Lett. 23 (1995) 309.

    Article  CAS  Google Scholar 

  50. Milos B. Volf, “Chemical approach to glass”, “Glass Science and Technology”, Vol. 7 (Elsevier, New York, 1984) 443.

    Google Scholar 

  51. K. J. Rao, B. G. Rao and S. R. Elliott, J. Mater. Sci. 20 (1985) 1678.

    Article  CAS  Google Scholar 

  52. B. Govinda Rao, H. G. Keshava Sundar and Kalya J. Rao, J. Chem. Soc. Farad. Trans. I 80 (1984) 349.

    Google Scholar 

  53. T. Furukawa, S. A. Brawer and B. White, J. Mater. Sci. 13 (1978) 268.

    Article  CAS  Google Scholar 

  54. Y. S. Bobovish, Opt. Spectrosc. 13 (1962) 274 (English transl.).

    Google Scholar 

  55. G. Wyckoff, “Crystal Structure”, Vol. 2 (1964) p. 181.

    Google Scholar 

  56. F. L. Galeener and J. C. Mikkeben, Solid State Commun. 30 (1979) 505.

    Article  CAS  Google Scholar 

  57. R. Grech, W. Muller-Warmuth and H. Dutz, J. Non-Cryst. Solids 34 (1979) 127.

    Article  Google Scholar 

  58. A. Wright, R. A. Hulme, D. I. Grimlev, R. N. Sinclair, S. W. Martin, D. L. Price and F. L. Galeener, ibid. 129 (1991) 213.

    Article  CAS  Google Scholar 

  59. A. E. R. Westman, “Non-Crystalline Solids”, (Wiley, New York, 1958) 409.

    Google Scholar 

  60. K. Suzuki and M. Ueno, J. Phys. (Les. Ulis. Fr.) 46 (1985) C-8, 26.

    Google Scholar 

  61. R. K. Brow, R. J. Kirkpatrick and G. I. Turner, J. Non-Cryst. Solids 116 (1990) 39.

    Article  CAS  Google Scholar 

  62. M. Hass and G. B. B. M. Sutherland, Proc. R. Soc. A236 (1957) 427.

    Google Scholar 

  63. A. Weil-Marchand, Compt. Rend 242 (1956) 1791.

    CAS  Google Scholar 

  64. P. A. Bulliner and Th. G. Spiro, Inorg. Chem. 8 (1969) 1023.

    Article  CAS  Google Scholar 

  65. J. R. Van Wazer, J. Am. Ceram. Soc. 78 (1956) 5709.

    Google Scholar 

  66. B. C. Sales, J. O. Ramey and L. A. Boatner, Phys. Rev. Lett. 59 (1987) 1718.

    Article  CAS  Google Scholar 

  67. P. P. Tsai and M. Greenblatt, J. Non-Cryst. Solids 103 (1988) 101.

    Article  CAS  Google Scholar 

  68. M. A. Ghauri and C. A. Hogarth, J. Mater. Sci. 19 (1984) 99.

    Article  CAS  Google Scholar 

  69. Motoya Anma, Tetsuji Yano, Atsuo Yasumori, Hiroshi Kawazoe and Masayuki Yamane, J. Non-Cryst. Solids 135 (1991) 79.

    Article  CAS  Google Scholar 

  70. M. N. Khan, Ravishankar Harani, M. M. Ahmed and C. A. Hogarth, J. Mater. Sci. 20 (1985) 2207.

    Article  CAS  Google Scholar 

  71. Vesselin Dimitrov and Yanko Dimitriev, J. Non-Cryst. Solids 122 (1990) 133.

    Article  CAS  Google Scholar 

  72. Y. Dimitriev and V. Dimitrov and M. Annandov and D. Topalov, ibid. 57 (1983) 147.

    Article  CAS  Google Scholar 

  73. Sankar Mandal and A. Ghosh, Phys. Rev. B Condens. Matter 48 (1993) 9388.

    Article  CAS  Google Scholar 

  74. G. Prabhakar, K. J. Rao and C. N. R. Rao, Chem. Phys. Lett. 139 (1987) 96.

    Article  CAS  Google Scholar 

  75. I. N. Chakraborty and R. A. Condrate, Phys. Chem. Glasses 26 (1985) 68.

    CAS  Google Scholar 

  76. M. Sayer and A. Mansingh, Phys. Rev. B6 (1972) 4629.

    Article  Google Scholar 

  77. A. C. Wright, Philos. Mag. B50 (1984) L23.

    Article  Google Scholar 

  78. R. M. J. Badger, J. Chem. Phys. 2 (1934) 128.

    Article  CAS  Google Scholar 

  79. Idem. ibid. 3 (1935) 710.

    Article  CAS  Google Scholar 

  80. G. Turrell, “Infrared and Raman Spectra of Crystals” (Acadmic Press, London, 1972).

    Google Scholar 

  81. G. Herzberg, “Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules” 2nd Edn (Von Nostrand, Princeton, NJ, 1950).

    Google Scholar 

  82. Anthony R. West, “Solid State Chemistry and Its Applications” (Wiley, New York, 1984) p. 315.

    Google Scholar 

  83. D. R. Uhlmann and N. J. Kreidl, in “Glass Science and Technology—I”, “Glass Forming Systems”, edited by N. J. Kreidl and D. R. Uhlmann (Academic Press, New York, 1983) p. 192.

    Google Scholar 

  84. S. W. Martin and C. A. Angell, J. Phys. Chem. 90 (1986) 6736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayanand, C., Bhikshamaiah, G., Tyagaraju, V.J. et al. Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x) P2O5 vitreous system. JOURNAL OF MATERIALS SCIENCE 31, 1945–1967 (1996). https://doi.org/10.1007/BF00356615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356615

Keywords

Navigation