Skip to main content
Log in

Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile deformation and fracture behaviour of aluminium alloy 2014 discontinuously-reinforced with particulates of Al2O3 was studied with the primary objective of understanding the influence of reinforcement content on composite microstructure, tensile properties and quasi-static fracture behaviour. Results reveal that elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. With increase in test temperature the elastic modulus showed a marginal decrease while the ductility exhibited significant improvement. The improved strength of the Al-Al2O3 composite is ascribed to the concurrent and mutually interactive influences of residual stresses generated due to intrinsic differences in thermal expansion coefficients between constituents of the composite, constrained plastic flow and triaxiality in the soft and ductile aluminium alloy matrix due to the presence of hard and brittle particulate reinforcements. Fracture on a microscopic scale initiated by cracking of the individual or agglomerates of Al2O3 particulates in the metal matrix and decohesion at the matrix-particle interfaces. Failure through cracking and decohesion at the interfaces increased with reinforcement content in the matrix. The kinetics of the fracture process is discussed in terms of applied far-field stress and intrinsic composite microstructural effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Mueller, J. L. Prohaska and J. W. Davis, in Proceedings of AIAA Aerospace Engineering Conference (AIAA, Los Angeles, California).

  2. D. A.Koss and S. M.Copley: Metall. Trans. 2A (1971) 1557.

    Google Scholar 

  3. A. P.Divecha, C. R.Crowe and S. G.Fishman, “Failure Modes in Composites IV ” (Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1977) pp.406–411.

    Google Scholar 

  4. A. P.Divecha, S. G.Fishman and S. D.Karmarkar, J. Met. 33 (1981) 12.

    CAS  Google Scholar 

  5. M.Taya and R. J.Arsenault, in “Metal Matrix Composites: Thermomechanical Behavior”, (Pergamon Press, Elmsford, New York, 1989).

    Google Scholar 

  6. T. S.Srivatsan and T. S.Sudarshan: in “Rapid Solidification Technology: An Engineering Guide”, edited by T. S. Srivatsan and T. S. Sudarshan (Technomic Publishing Inc., PA, 1993) pp. 603–700.

    Google Scholar 

  7. L. M.Brown and W. M.Stobbs, Phil. Mag. 23 (1971) 1185.

    Article  CAS  Google Scholar 

  8. S. V.Nair, J. K.Tien and R. C.Bates, Int. Met. Rev. 30 (1985) 285.

    Article  Google Scholar 

  9. D. L.McDanels, Metall. Trans. 16A (1985) 1105.

    Article  CAS  Google Scholar 

  10. S.Dermarkar, Met. Mater. 2 (1986) 144.

    CAS  Google Scholar 

  11. W. H. Hunt, Jr, C. R. Cook and R. R. Sawtell “Cost Effective High Performance Powder Metallurgy Aluminum Matrix Composites for Automotive Applications,” SAE Technical Paper Series 910834, February 1991, Warrendale, PA.

  12. W. R. East, Mater. Eng. March (1988) 33.

  13. R. DeMeis, Aerosp. Amer. March (1989) 26.

  14. T. C. Willis, Met. Mater. August (1988) 485.

  15. Y.Sugimura and S.Suresh, Metall. Trans. 23A (1992) 2231.

    Article  CAS  Google Scholar 

  16. P. K.Liaw and W. A.Logsdon, Eng. Fract. Mech. 24 (1986) 737.

    Article  Google Scholar 

  17. I. J.Lewandowski, C.Liu and W. H.Hunt, Jr, in “Interfacial Phenomenon in Composites: Processing, Characteristics and Mechanical Properties” (Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1988).

    Google Scholar 

  18. J. K.Shang and R. O.Ritchie, Metall. Trans. 20A (1989) 897.

    Article  CAS  Google Scholar 

  19. , Acta Metall. 37 (1989) 2267.

    Article  CAS  Google Scholar 

  20. J. J.Lewandowski, C.Liu and W. H.Hunt, Jr. Mater. Sci. Eng. 107A (1989) 49.

    Google Scholar 

  21. D. L.Davidson, J. Mater. Sci. 24 (1989) 681.

    Article  CAS  Google Scholar 

  22. , Eng. Fract. Mech. 33 (1989) 965.

    Article  Google Scholar 

  23. M.Manoharan and J. J.Lewandowski, Acta Metall. 38 (1990) 489.

    Article  CAS  Google Scholar 

  24. , Scripta Metall. 23 (1989) 301.

    Article  CAS  Google Scholar 

  25. T. S.Srivatsan and J.Mattingly, J. Mater. Sci. 23 (1993) 611.

    Article  Google Scholar 

  26. G. J.Dvorak, in “Metal Matrix Composites: Mechanisms and Properties”, edited by R. K. Everett and R. J. Arsenault (Academic Press, San Diego, CA, 1991) pp. 1–70.

    Google Scholar 

  27. V. C.Nardone, Scripta Metall. 21 (1987) 1313.

    Article  CAS  Google Scholar 

  28. R. L.Mehan, “Metal Matrix Composites”, ASTM STP (American Society for Testing and Materials, Philadelphia, 1968) p. 43.

    Google Scholar 

  29. G. J.Dvorak, M. S. M.Rao and I. Q.Tarn, J. Compos. Mater. 7 (1973) 194.

    Article  CAS  Google Scholar 

  30. R. J.Arsenault and R. M.Fisher, Scripta Metall. 17 (1983) 67.

    Article  CAS  Google Scholar 

  31. R. J.Arsenault, Mater. Sci. Eng. 64 (1984) 171.

    Article  CAS  Google Scholar 

  32. R. J.Arsenault, L.Wang and C. R.Feng, Acta Metall. Mater. 39 (1991) 47.

    Article  CAS  Google Scholar 

  33. M.Vogelsang, R. J.Arsenault and R. M.Fisher, Metall. Trans. 127A (1986) 379.

    Article  Google Scholar 

  34. Y.Flom and R. J.Arsenault, Mater. Sci. Eng. 77 (1986) 191.

    Article  CAS  Google Scholar 

  35. M. F.Ashby and L.Johnson, Phil. Mag. 20 (1969) 1009.

    Article  CAS  Google Scholar 

  36. F. J. Humphreys, in 9th Riso International Symposium on Metallurgy and Materials Science, Mechanical Properties and Physical Behavior of Metals and Composites, Roskilde, Denmark, 1988, p. 51.

  37. A. S.Argon, I.Im and R.Safoglu, Metall. Trans. 6A (1975) 825.

    Article  CAS  Google Scholar 

  38. R. J.Arsenault, in “Composite Structures”, edited by I. H. Marshall (Elsevier Science Publishers, London, 1987) pp. 70–90.

    Google Scholar 

  39. , in “Metal Matrix Composites: Mechanisms and Properties, edited by R. K. Everett and R. J. Arsenault (Academic Press, San Diego, 1991) pp. 79–87.

    Google Scholar 

  40. W. J.Clegg, Acta Metall. 36 (1988) 2141.

    Article  CAS  Google Scholar 

  41. M.Taya, K. E.Lulay and D. J.Lloyd: Acta Metallurgica Materialia, Vol. 39, 1991, pp. 73–80.

    Article  CAS  Google Scholar 

  42. M.Taya, Mater. Trans.: Jpn Inst. Met. 32 (1991) 1.

    Article  CAS  Google Scholar 

  43. D. J.Lloyd, Acta Metall. 39 (1991) 59.

    Article  CAS  Google Scholar 

  44. R. J.Arsenault, J. Compos. Techn. Res. 10 (1988) 140.

    Article  CAS  Google Scholar 

  45. R. J.Arsenault and M.Taya, Acta Metall. 35 (1987) 651.

    Article  CAS  Google Scholar 

  46. T.Mochida, M.Taya and D. J.Lloyd, Mater. Trans. JIM. 32 (1991) 931.

    Article  CAS  Google Scholar 

  47. D. C.Drucker, in “High Strength Materials”, edited: V. F. Zackey (Wiley Interscience, New York, 1965).

    Google Scholar 

  48. T. W.Butler and D. C.Drucker, J. Appl. Mech. 40 (1973) 780.

    Article  CAS  Google Scholar 

  49. K.Tanaka and T.Mori, Acta Metall. 18 (1979) 931.

    Article  Google Scholar 

  50. N.Hansen, Acta Metall. 25 (1977) 863.

    Article  CAS  Google Scholar 

  51. K. K.Chawla and M.Metzger, J. Mater. Sci. 17 (1972) 34.

    Article  Google Scholar 

  52. M.Taya and T.Mori, Acta Metall. 35 (1987) 155.

    Article  CAS  Google Scholar 

  53. M. F.Ashby, Phil. Mag. 21 (1970) 399.

    Article  CAS  Google Scholar 

  54. F. A.McClintock, “Ductility” (American Society for Metals, Metal Park, Ohio, 1968) pp. 256–261.

    Google Scholar 

  55. R. H.Vanstone, T. B.Cox, J. R.Low, Jr and J. A.Psioda, Int. Met. Rev. 30 (1975) 157.

    Google Scholar 

  56. A. S.Argon, J.Im and R.Safoglu, Metall. Trans. 6A (1975) 825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, T.S. Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites. JOURNAL OF MATERIALS SCIENCE 31, 1375–1388 (1996). https://doi.org/10.1007/BF00353120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353120

Keywords

Navigation