Skip to main content
Log in

Titration of replication activity by increasing ARS dosage in yeast plasmids

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The rep1 region of the yeast mitochondrial genome, a putative replication origin, contains a weak autonomously replicating sequence (ARS). Nucleotidesequence and deletion analyses have identified two 11-base pair ARS consensus sequences, numerous near matches to the ARS core, and a region of curvature that may contribute to ARS function. Based on the amplified nature of petite-derivative mitochondrial DNA encompassing this locus, we have constructed plasmids containing an increasing dosage of ARS elements. The rep1 ARS element can have an additive effect on plasmid stability when present either as a tandem dimer or as an unlinked pair. However, the presence of a third ARS copy does not further enhance plasmid stability. These results indicate that measurable dosage effects can be defined only in circumstances where weak ARS elements are employed, and that plasmid maintenance within yeast cells is saturable and varies among the different sequences promoting replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackburn EH, Szostak JW (1984) Annu Rev Biochem 53:163–194

    Google Scholar 

  • Blanc H (1984) Gene 30:47–61

    Google Scholar 

  • Blanc H, Dujon B (1980) Proc Natl Acad Sci USA 77:3942–3946

    Google Scholar 

  • Blanc H, Dujon B (1982) Replicator regions of the yeast mitochontrial DNA active in vivo and in yeast transformants. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor, Laboratory, Cold Spring Harbor, New York, pp 279–294

    Google Scholar 

  • Brewer BJ, Fangman WL (1987) Cell 51:463–471

    Google Scholar 

  • Burke DT, Olson MV (1991) Methods Enzymol 194:251–270

    Google Scholar 

  • Clarke L, Carbon J (1980) Nature 287:504–509

    Google Scholar 

  • Clarke L, Carbon J (1985) Annu Rev Genet 19:29–56

    Google Scholar 

  • deZamaroczy M, Marrotta R, Faugeron-Fonty G, Goursot R, Mangin M, Baldacci G, Bernardi G (1981) Nature 292:75–78

    Google Scholar 

  • Eckdahl TT, Anderson JN (1987) Nucleic Acids Res 15:8531–8545

    Google Scholar 

  • Garcia-Garcia F (1989) PhD thesis, University of California, Riverside

  • Hand R (1978) Cell 15:317–325

    Google Scholar 

  • Harland R (1981) Trends Biochem Sci 6:71–74

    Google Scholar 

  • Henikoff S (1987) Methods Enzymol 155:156–165

    Google Scholar 

  • Hieter P, Mann C, Snyder M, Davis RW (1985) Cell 40:381–392

    Google Scholar 

  • Hogan E, Koshland D (1992) Proc Natl Acad Sci USA 89:3098–3102

    Google Scholar 

  • Huberman JA, Spotila LD, Nawotka KA, El-Assouli SM, Davis LR (1987) Cell 51:473–481

    Google Scholar 

  • Hyman BC, Cramer JH, Rownd RH (1982) Proc Natl Acad Sci USA 79:1578–1582

    Google Scholar 

  • Hyman BC, Cramer JH, Rownd RH (1983) Gene 26:223–230

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Kouprina NY, Larinov VL (1983) Curr Genet 7:433–438

    Google Scholar 

  • Lederberg EM, Cohen SN (1974) J Bacteriol 119:1072–1074

    Google Scholar 

  • Murray AW, Szostak JW (1985) Annu Rev Cell Biol 1:289–315

    Google Scholar 

  • Newlon CS (1988) Microbiol Rev 52:568–601

    Google Scholar 

  • Osinga KA, De Haan M, Christianson T, Tabak HF (1982) Nucleic Acids Res 10:7993–8006

    Google Scholar 

  • Palzkill TG, Newlon CS (1988) Cell 53: 441–450

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Nature 282:39–43

    Google Scholar 

  • Stinchcomb DT, Thomas K, Kelly J, Selker E, Davis RW (1980) Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Van Houten JV, Newlon CS (1990) Mol Cell Biol 10:3917–3925

    Google Scholar 

  • Williams JS, Eckdahl TT, Anderson JN (1988) Mol Cell Biol 8:2763–2769

    Google Scholar 

  • Williamson DH (1985) Yeast 1:1–14

    Google Scholar 

  • Zweifel SG, Fangman WL (1990) Yeast 6:179–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. W. Birky, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyman, B.C., Garcia-Garcia, F. Titration of replication activity by increasing ARS dosage in yeast plasmids. Curr Genet 23, 141–147 (1993). https://doi.org/10.1007/BF00352013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352013

Key words

Navigation