Skip to main content
Log in

The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, ac-jun homologue, is involved in oxygen metabolism

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The PAR1/SNQ3 gene of S. cerevisiae, which increases resistance to iron chelators in multi-copy transformants, is identical to the YAP1 gene, a yeast activator protein isolated as a functional homologue of the human c-jun oncogene by binding specifically to the AP-1 consensus box. The observed H2O2-sensitivity of par1 mutants has been attributed to an increased sensitivity to reduced oxygen intermediates. Accordingly, par1 mutants did not survive an elevated oxygen pressure and were very sensitive to menadione and methylviologene, two chemicals enhancing the deleterious effects of oxygen. The specific activities of enzymes involved in oxygen detoxification, such as superoxide dismutase, glucose 6-phosphate dehydrogenase and glutathione reductase, were decreased in par1 mutants and increased after PAR1 over-expression. As in the case of oxygen detoxification enzymes, the cellular levels of glutathione were similarly affected. These observations indicate that PAR1/YAP1/SNQ3 is involved in the gene regulation of certain oxygen detoxification enzymes. The finding that H2O2 promotes DNA-binding of human c-jun is consistent with a similar function for PAR1/YAP1/SNQ3 and c-jun in cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel P, Imagewa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Cell 49:729–739

    Google Scholar 

  • Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T, Karin M (1988) Nature 332:166–171

    Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) EMBO J 10:585–592

    Google Scholar 

  • Bergmayer HU (1974) Methoden der enzymatischen Analyse 3rd edn. Verlag Chemie, Weinheim, pp. 459–461, 494–495, 674–675

    Google Scholar 

  • Bermingham-McDonogh O, Gralla EB, Selverstone Valentine J (1988) Proc Natl Acad Sci USA 85:4789–4793

    Google Scholar 

  • Bilinski T, Krawiec Z, Litwinska J, Blaszczynski M (1988) Oxy-radicals in molecular biology and pathology. In: Cerutti PA, Fridsrich J, McCord JM (eds.) UCCLA Symposium on Molecular and Cellular Biology. Atlan R Liss, New York, pp 109–125

    Google Scholar 

  • Chan E, Weiss B (1987) Proc Natl Acad Sci USA 84:3189–3193

    Google Scholar 

  • Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) Cell 54:541–552

    Google Scholar 

  • Ciriacy M (1977) Mol Gen Genet 176:427–431

    Google Scholar 

  • Devary Y, Gottlieb RA, Lau LF, Karin M (1991) Molec Cell Biol 11:2804–2811

    Google Scholar 

  • Fridovich I (1989) J Biol Chem 264:7761–7764

    Google Scholar 

  • Garcia J, Harrich D, Pearson L, Nutsuyasu R, Gaynor R (1988) EMBO J 7:3143–3147

    Google Scholar 

  • Greenberg JT, Demple B (1989) J Bacteriol 171:3933–3939

    Google Scholar 

  • Gregory EM, Fridovich I (1973) J Bacteriol 114:543–548

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Trends Biochem Sci 11:372–375

    Google Scholar 

  • Halliwell B, Gutteridge MC (1990) Methods Enzymol 186:1–89

    Google Scholar 

  • Hansen H, Roggenkamp R (1989) Eur J Biochem 184:173–179

    Google Scholar 

  • Harshman KD, Moye-Rowley WS, Parker CS (1988) Cell 53:321–330

    Google Scholar 

  • Hassan HM, Fridovich I (1979) J Biol Chem 254:10864–10852

    Google Scholar 

  • Hertle K, Haase E, Brendel M (1991) Curr Genet 19:429–433

    Google Scholar 

  • Hope I, Struhl K (1985) Cell 43:177–188

    Google Scholar 

  • Imlay JA, Linn S (1988) Science 240:1302–1309

    Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) Science 240:1759–1764

    Google Scholar 

  • Lee W, Haslinger A, Karin M, Tjian R (1987a) Nature 325:368–372

    Google Scholar 

  • Lee W, Mitchell P, Tjian R (1987b) Cell 49:741–752

    Google Scholar 

  • Levin JD, Johnson AW, Demple B (1988) J Biol Chem 263:8066–8071

    Google Scholar 

  • Linda (1989) Bacteriol 171:868–873

    Google Scholar 

  • Maitra PK, Lobo Z (1971) J Biol Chem 246:475–488

    Google Scholar 

  • Miskin R, Ben-Ishay R (1981) Proc Natl Acad Sci USA 78:6236–6240

    Google Scholar 

  • Moody C, Hassan HM (1982) Proc Natl Acad Sci USA 79:2855–2859

    Google Scholar 

  • Moye-Rowley WS, Harshman KD, Parker CS (1989) Genes Develop 3:283–292

    Google Scholar 

  • Niederhoffer EC, Naranjo CM, Bradley KL, Fee JA (1990) J Bacteriol 172:1930–1938

    Google Scholar 

  • Nogae I, Johnston M (1990) Gene 96:161–169

    Google Scholar 

  • Oyanagui Y (1984) Anal Biochem 142:290–296

    Google Scholar 

  • Ryder K, Lau LF, Nathans D (1988) Proc Natl Acad Sci USA 85:1487–1491

    Google Scholar 

  • Schnell N, Entian K-D (1991) Eur J Biochem 200:487–493

    Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) EMBO J 10:2247–2258

    Google Scholar 

  • Storz G, Tartaglia LA, Farr SB, Ames BN (1990) Trends Genet 6:363–368

    Google Scholar 

  • Tardat B, Touati D (1991) Mol Microbiol 5:455–465

    Google Scholar 

  • Tietze F (1969) Anal Biochem 27:502–506

    Google Scholar 

  • Tsaneva IR, Weiss B (1990) J Bacteriol 172:4197–4205

    Google Scholar 

  • Turrens JF, Boveris A (1980) Biochem J 191:421–427

    Google Scholar 

  • Weisshaar B, Armstrong GA, Block A, da Costa e Silva O, Hahlbrock K (1991) EMBO J 10:1777–1786

    Google Scholar 

  • Westerbeek-Marres CAM, Moore MM, Autor AP (1988) Eur J Biochem 174:611–620

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. K. Zimmermann

Dedicated to Professor Dr. R. W. Kaplan on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, N., Krems, B. & Entian, KD. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, ac-jun homologue, is involved in oxygen metabolism. Curr Genet 21, 269–273 (1992). https://doi.org/10.1007/BF00351681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351681

Key words

Navigation