Skip to main content
Log in

Complex wavenumber Fourier analysis of the p-version finite element method

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

High-order finite element discretizations of the reduced wave equation have frequency bands where the solutions are harmonic decaying waves. In these so called “stopping” bands, the solutions are not purely propagating (real wavenumbers) but are attenuated (complex wavenumbers). In this paper we extend the standard dispersion analysis technique to include complex wavenumbers. We then use this complex Fourier analysis technique to examine the dispersion and attenuation characteristics of the p-version finite element method. Practical guidelines are reported for phase and amplitude accuracy in terms of the spectral order and the number of elements per wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbboundN. N., PinskyP. M. (1992): Finite element dispersion analysis for the three-dimensional second-order scalar wave equation. Int. J. Number Meth. Eng. 35, 1183–1218

    Google Scholar 

  • Alvin, K. F.; Park, K. C. (1991): Frequency-window tailoring of finite element models for vibration and acoustics analysis. In: Keltie, R. F. (ed): Structural acoustics. vol. NCA-vol. 12/AMD-vol. 128, pp. 117–128. ASME

  • BabuskaI.; CraigA.; MandelJ. (1991): Efficient preconditioning for the p-version finite element method in two-dimensions. SIAM J. Num. Anal. 28, 624–661

    Google Scholar 

  • BauskaI.; SuriM. (1990): The p- and h-p versions of the finite element method,an overview. Comp. Meth. in Appl. Mech. Eng. 80, 5–26

    Google Scholar 

  • BarragyE.; CareyG. F. (1991): Preconditioners for high degree elements. Comp. Meth. in Appl. Mech. Eng. 93, 97–110

    Google Scholar 

  • BaylissA.; GoldsteinC. I.; TurkelE. (1985). On accuracy conditions for the numerical computation of waves. J. Comp. Phys. 59, 396–404

    Google Scholar 

  • Bellanger, M. (1989): Digital Processing of Signals. John Wiley and Sons

  • BelytschkoT. B.; MindleW. L. (1980): Flexural wave propagation behaviour of lumped mass approximations. Comput. Struct. 12, 805–812

    Google Scholar 

  • Belytschko, T. B.; Mullen, R. (1978): On dispersive properties of finite element solutions. In: Miklowitz, J. (ed.): Modern problems in elastic wave propagation, pp. 67–82

  • Brillouin, L. (1953): Wave propagation in periodic structures. Dover

  • Canuto, C.; Hussaini, M. Y.; Quarternoni, A.; Zang, T. A. (1988): Spectral methods in fluid dynamics. Springer-Verlag

  • Churchill, R. V.; Brown, J. W.; Verhey, R. F. (1976): Complex variables and applications. McGraw-Hill

  • DevilleM. O.; MundE. H. (1992): Fourier analysis of finite element preconditioned collocation schemes. SIAM J. Sci. Stat. Comp. 13, 596–610

    Google Scholar 

  • Fischer, P. F.; Patera, A. T. (1991): Parallel spectral element methods for the incompressible Navier-Stokes equations. In: Supercomputing, pp. 71–143. ASME

  • FribergO.; MollerP. (1987): An adaptive procedure for eigenvalue problems using the hierarchical finite element method. Int. J. Num. Meth. Ing. 24, 319–335

    Google Scholar 

  • Grosh, K.; Pinsky, P. M. (1992): Complex wavenumber finite element dispersion analysis: in vacuo and fluid-loaded plates. Submitted to: Comp. Meth. in Appl. Mech. Eng.

  • Harari, I.; Hughes, T. J. R. (1991a): Computational methods for problems of acoustics with particular reference to exterior domains. Tech. Report SUDAM No. 91-1, Stanford University

  • HarariI.; HughesT. J. R. (1991b): Finite element methods for the Helmholtz equation in an exterior domain: Model problems. Compl. Meth. in Appl. Mech. Eng. 87, 59–96

    Google Scholar 

  • HughesT. J. R.; FrancaL. P.; HulbertG. M. (1989): A new finite element formulation for computational fluid dynamics: VIII. The galerkin least squares method for advective-diffusive equations. Comp. Meth. in Appl. Mech. Eng. 73, 173–189

    Google Scholar 

  • Jasti, R. (1992): Mixed shell finite elements with applications in structural acoustics. Ph.D. Thesis, Stanford University

  • Maday, Y.; Patera, A. T. (1989): Spectral element methods for the incompressible Navier-Stokes equations. In: Noor, A. K.; Oden, J. T. (ed.): State-of-the-art surveys on computational mechanics, pp. 71–143, ASME

  • MindleW. L.; BelytschkoT. (1983): A study of shear factors in reduced-selective integration Mindlin beam elements. Comput. Struct. 17, 339–344

    Google Scholar 

  • ParkK. C.; FlaggsD. L. (1984): A Fourier analysis of spurious mechanisms and locking in the finite element method. Comp. Meth. in Appl. Mech. Eng. 46, 65–81

    Google Scholar 

  • ParkK. C.; FlaggsD. L. (1985): A symbolic Fourier synthesis of a one-point integrated quadrilateral plate element. Comp. Meth. in Appl. Mech. Eng. 48, 805–812

    Google Scholar 

  • PateraA. T. (1984): A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comp. Phys. 54, 468–488

    Google Scholar 

  • ShakibF.; HughesT. J. R. (1991): A new finite element formulation for computational fluid dynamics: IX Fourier analysis of space-time Galerkin/least-squares algorithms. Comp. Meth. in Appl. Mech. Eng. 87, 35–58

    Google Scholar 

  • SilvaM. A. G. (1991): Study of pass and stop bands of some periodic composites. Acustica 75, 62–68

    Google Scholar 

  • Szabo, B.; Babuska, I. (1991): Finite element analysis. Wiley

  • Thompson, L. L.; Pinsky, P. M. (1993): A Galerkin/least-squares finite element method for the two-dimensional Helmholtz equation. Submitted to: Int. J. Num. Meth. Eng.

  • UnderwoodP. (1974): Accuracy of finite difference representations for the transients response analysis of shells. Earthquake Eng. and Struc. Dynam. 2, 219–233

    Google Scholar 

  • Voight, R. G.; Gottlieb, D.; Hussaini, M. Y. (1984): Spectral methods for partial differential equations. SIAM

  • Wolfram, S. (1991): Mathematica. Addison-Wesley

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, March 30, 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, L.L., Pinsky, P.M. Complex wavenumber Fourier analysis of the p-version finite element method. Computational Mechanics 13, 255–275 (1994). https://doi.org/10.1007/BF00350228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350228

Keywords

Navigation