Skip to main content
Log in

The fine structure of the retina of the honey bee drone

An electron microscopical study

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The eye of the honey bee drone is composed of approximately 8,000 photoreceptive units or ommatidia, each topped by a crystalline cone and a corneal facet. An ommatidium contains 9 visual or retinula cells whose processes or axons pierce a basement membrane and enter the optic lobe underlying the sensory retina. The visual cells of the ommatidium are of unequal size: six are large and three, small. In the center of the ommatidium, the visual cells bear a brush of microvilli called rhabdomere. The rhabdome is a closed-type one and formed mainly by the rhabdomeres of the six large retinula cells. The rhabdomeric microvilli probably contain the photopigment (rhodopsin), whose modification by light lead to the receptor potential in the retinula cells. The cytoplasm of the retinula cells contains various organelles including pigment granules (ommochromes), and peculiar structures called the subrhabdomeric cisternae. The cisternae, probably composed of agranular endoplasmic reticulum undergo swelling during dark adaptation and appear in frequent connection with Golgi cisternae. Three types of pigment cells are associated with each ommatidium. The crystalline cone is entirely surrounded by two corneal pigment cells. The ommatidium, including its dioptric apparatus and corneal pigment cells, is surrounded by a sleeve of about 30 elongated cells called the outer pigment cells. These extend from the base of the corneal facet to the basement membrane. Near the basement membrane the center of the ommatidium is occupied by a basal pigment cell. Open extracellular channels are present between pigment cells as well as between retinula cells. Tight junctions within the ommatidium are restricted to the contact points between the rhabdomeric microvilli. These results are discussed in view of their functional implications in the drone vision, as well as in view of the data of comparative morphology.

Résumé

L'oeil composé du faux-bourdon est formé d'environ 8000 unités photoréceptrices ou ommatidies. Chaque ommatidie, surmontée d'un appareil diotrique constitué d'une lentille cornéenne et d'un cône cristallinien, comporte 9 cellules visuelles dont les parties proximales (axones) pénètrent dans le lobe optique. Le lobe optique est séparé de la rétine sensorielle par une membrane basale. Les cellules visuelles formant l'ommatidie sont de taille inégale: six sont grandes et trois petites. Au centre de l'ommatidie, les grandes cellules visuelles forment de nombreuses microvillosités dont l'ensemble constitue le rhabdome. Celui-ci est du type fermé. La membrane des microvillosités contient probablement le photopigment. Le cytoplasme des cellules visuelles est riche en organites parmi lesquels des vacuoles allongées de réticulum endoplasmique lisse appelées citernes périrhabdominales. Les citernes changent de volume lors de l'adaptation à la lumière et à l'obscurité et apparaissent fréquemment en contact avec des complexes de Golgi ou des profiles de réticulum endoplasmique granulaire.

Trois types de cellules pigmentaires sont associés à l'ommatidie: les cellules pigmentaires du cristallin, les cellules pigmentaires externes, et la cellule pigmentaire basale. Les cellules pigmentaires du cristallin sont au nombre de deux et enveloppent le cône cristallinien. 27 à 30 cellules pigmentaires externes entourent l'ommatidie depuis la base de la cornée jusqu'à la membrane basale. La cellule pigmentaire basale occupe le centre de l'ommatidie lorsque les cellules visuelles se transforment en axones. Les divers types cellulaires de la rétine sont séparés les uns des autres par de minces espaces extracellulaires. Dans l'ommatidie, des jonctions serrées ne sont trouvées qu'entre les microvillosités rhabdomériques. Ces résultats sont discutés du point de vue de leur implication fonctionelle et de leur signification vis-à-vis de la morphologie comparée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).

    Google Scholar 

  • Barr, L., Dewey, M. M., Berger, W.: Propagation of action potentials and the structure of the nexus in cardiac muscle. J. gen. Physiol. 48, 797–823 (1965).

    Google Scholar 

  • Baumann, F.: Slow and spike potentials recorded from retinula cells of the honey bee drone in response to light. J. gen. Physiol. 52, 855–875 (1968).

    Google Scholar 

  • —, Perrelet, A., Fulpius, B.: Etude fonctionelle et morphologique de la cellule rétinienne du faux-bourdon au cours de l'adaptation à la lumière et à l'obscurité. Helv. Physiol. Acta 25, CR 163 (1967).

    Google Scholar 

  • Bertrand, D., Perrelet, A.: Localisation par coloration intracellulaire de divers types de réponse à la lumière dans l'oeil du faux-bourdon. J. Physiol. (Paris) (1969) (in press).

  • Blasie, J. K., Dewey, M. M., Blaurock, A. E., Worthington, C. R.: Electron microscope and low-angle X-ray diffraction studies on outer segment membranes from the retina of the frog. J. molec. Biol. 14, 143–152 (1965).

    Google Scholar 

  • Butenandt, A., Biekert, E., Linzen, B.: Über Ommochrome. XIII. Isolierung und Charakterisierung von Omminen. Hoppe-Seylers Z. physiol. Chem. 312, 227–236 (1958).

    Google Scholar 

  • Chliamovitch, Y. P.: Effets du potassium sur le potentiel de repos de la cellule rétinienne du faux-bourdon. BS Thesis, Faculty of Sciences, University of Geneva (1970).

  • Dewey, M. M., Davis, P. K., Blasie, J. K., Barr, L.: Localization of rhodopsin antibody in the retina of the frog. J. molec. Biol. 39, 395–405 (1969).

    Google Scholar 

  • Drochmans, P.: Morphologie du glycogène. J. Ultrastruct. Res. 6, 141–163 (1962).

    Google Scholar 

  • Fahrenbach, W. H.: The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).

    Google Scholar 

  • Farquhar, M. G., Palade, G. E.: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Google Scholar 

  • Fernández-Morán, H.: The fine structure of vertebrate and invertebrate photoreceptors as revealed by low-temperature electron microscopy. In: The structure of the eye, ed. by G. K. Smelser, p. 521–556. New York: Academic Press 1961.

    Google Scholar 

  • Fulpius, B., Baumann, F.: Effects of Na, K and Ca ions on slow and spike potentials in single photoreceptor cells. J. gen. Physiol. 53, 541–561 (1969).

    Google Scholar 

  • Goldsmith, T. H.: The visual system of the honey bee. Proc. nat. Acad. Sci. (Wash.) 44, 123–126 (1958).

    Google Scholar 

  • —: Fine structure of the retinulae in the compound eye of the honey bee. J. Cell Biol. 14, 489–494 (1962).

    Google Scholar 

  • —: The visual system of insects. In: The physiology of insecta, ed. by M. Rockstein, p. 397–462. New York: Academic Press 1964.

    Google Scholar 

  • Hadjilazaro, B.: Afterpotentials of the drone retinula cells and mechanisms of their generation. Ph. D. Thesis, University of Geneva (1970).

  • Horridge, G. A.: The retina of the locust. In: The functional organization of the compound eye. Wenner-Gren Symposium, ed. by C. G. Bernhard, p. 513–541. London: Pergamon Press 1966.

    Google Scholar 

  • —: A note on the number of retinula cells of Notonecta. Z. vergl. Physiol. 61, 259–262 (1968).

    Google Scholar 

  • Horridge, G. A., Barnard, P. B. T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).

    Google Scholar 

  • Johnston, P. V., Roots, B. I.: Fixation of the central nervous system by perfusion with aldehydes and its effect on the extracellular space as seen by electron microscopy. J. Cell Sci. 2, 377–386 (1967).

    Google Scholar 

  • Karnovsky, M. J.: Simple methods for “staining with lead” at high pH in electron microscopy. J. biophys. biochem. Cytol. 11, 729–732 (1961).

    Google Scholar 

  • —: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol. 35, 213–236 (1967).

    Google Scholar 

  • Kuffler, S. W., Nicholls, J. G.: The physiology of neuroglial cells. Ergebn. Physiol. 57, 1–90 (1966).

    Google Scholar 

  • —, Orkand, R. K.: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).

    Google Scholar 

  • —, Potter, D. D.: Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J. Neurophysiol. 27, 290–320 (1964).

    Google Scholar 

  • Langer, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).

    Google Scholar 

  • —, Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41, 673–677 (1966).

    Google Scholar 

  • Lasansky, A.: Cell junctions in ommatidia of Limulus. J. Cell Biol. 33, 365–383 (1967).

    Google Scholar 

  • Locke, M.: The structure and formation of the integument in insects. In: The physiology of insecta, ed. by M. Rockstein, p. 379–470. New York: Academic Press 1964.

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • McManus, J. F. A.: Histological demonstration of mucin after periodic acid. Nature (Lond.) 158, 202 (1946).

    Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).

    Google Scholar 

  • Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Physics 32, 1637 (1961).

    Google Scholar 

  • Mira-Moser, F.:Histophysiologie expérimentale de la fonction thyréotrope chez le crapaud Bufo bufo L. Arch. Anat. (Strasbourg) 52, 88–182 (1969).

    Google Scholar 

  • Naka, K., Eguchi, E.: Spike potentials recorded from the insect photoreceptor. J. gen. Physiol. 45, 663–680 (1962).

    Google Scholar 

  • Nicholls, J. G., Kuffler, S. W.: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J. Neurophysiol. 27, 645–671 (1964).

    Google Scholar 

  • Nilsson, S. E.: The ultrastructure of the receptor outer segments in the retina of the leopard frog (Rana pipiens). J. Ultrastruct. Res. 12, 207–231 (1965).

    Google Scholar 

  • Orci, L., Junod, A., Pictet, R., Renold, A. E., Rouiller, Ch.: Granulolysis in A cells of endocrine pancreas in spontaneous and experimental diabetes in animals. J. Cell Biol. 38, 462–466 (1968).

    Google Scholar 

  • Payton, B. W., Bennett, M. V. L., Pappas, G.: Permeability and structure of junctional membranes at an electrotonic synapse. Science 166, 1641–1643 (1969).

    Google Scholar 

  • Perrelet, A.: La structure fine de l'oeil du faux-bourdon Apis mellifera. M. D. Thesis, University of Geneva (1969).

  • —, Baumann, F.: Evidence for extracellular space in the rhabdome of the honey bee drone eye. J. Cell Biol. 40, 825–830 (1969a).

    Google Scholar 

  • —: Presence of three small retinula cells in the ommatidium of the honey bee drone eye. J. Microscopie 8, 497–502 (1969b).

    Google Scholar 

  • Phillips, E. F.: Structure and development of the compound eye of the honey bee. Proc. Acad. nat. Sci. Phil. 57, 123–157 (1905).

    Google Scholar 

  • Phillips, M. J., Unakar, N. J.: Glycogen depletion in the newborn rat liver. An electron microscopic and electron histochemical study. J. Ultrastruct. Res. 18, 142–165 (1967).

    Google Scholar 

  • Revel, J. P.: Electron microscopy of glycogen. J. Histochem. Cytochem. 12, 104–114 (1964).

    Google Scholar 

  • —, Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12 (1967).

    Google Scholar 

  • Röhlich, P., Törö, I.: Fine structure of the compound eye of Daphnia in normal, dark- and strongly light-adapted state. In: Eye structure. II Symp., ed. by J. W. Rohen, p. 175–186. Stuttgart: Schattauer 1965.

    Google Scholar 

  • Sabatini, D. D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Sanchez, D. S.: Sobre la existencia de un aparato tactil en los ojos compuestos de las abejas. Trab. Lab. Invest. Biol. Madrid 18, 207–244 (1920).

    Google Scholar 

  • Schultz, R. L., Karlsson, U.: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. II. Effects of osmolarity, pH of perfusate and fixative concentration. J. Ultrastruct. Res. 12, 187–206 (1965).

    Google Scholar 

  • Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala. Z. vergl. Physiol. 59, 205–231 (1968).

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in ommatidia of drone honey bee and locust compound eyes. Vision Res. 9, 999–1029 (1969).

    Google Scholar 

  • Shoup, J. R.: The development of pigment granules in the eyes of wild type and mutant Drosophila melanogaster. J. Cell Biol. 29, 223–249 (1966).

    Google Scholar 

  • Smith, R. E., Farquhar, M. G.: Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol. 31, 319–347 (1966).

    Google Scholar 

  • Varela, F. G.: Fine structure of the visual system of the honey bee. II. The lamina. J. Ultrastruct. Res. 31, 178–194 (1970).

    Google Scholar 

  • Varela, F. G., Porter, K. R.: Fine structure of the visual system of the honeybee. I. The retina. J. Ultrastruct. Res. 29, 236–259 (1969).

    Google Scholar 

  • Venable, J. H., Coggeshall, R. E.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).

    Google Scholar 

  • Waddington, C. H., Perry, M. M.: The ultrastructure of the developing eye of Drosophila. Proc. roy. Soc. B 153, 155–173 (1961).

    Google Scholar 

  • Wald, G.: Single and multiple visual systems in arthropods. J. gen. Physiol. 51, 125–156 (1968a).

    Google Scholar 

  • —: Molecular basis of visual excitation. Science 162, 230–239 (1968b).

    Google Scholar 

  • Waterman, T. H.: Systems analysis and the visual orientation of animals. Amer. Scientist 54, 15–45 (1966).

    Google Scholar 

  • White, R. H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. exp. Zool. 166, 405–426 (1967).

    Google Scholar 

  • Wigglesworth, V. B.: Principles of insect physiology. London: Menthuen & Co. Ltd. 1965.

    Google Scholar 

  • Wolken, J. J., Florida, R. G.: The eye structure and optical system of the crustacean copepod, Copilia. J. Cell Biol. 40, 279–285 (1969).

    Google Scholar 

  • Wood, R. L.: Intercellular attachment in the epithelium of Hydra as revealed by electron microscopy. J. biophys. biochem. Cytol. 6, 343–351 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am most indebted to Dr. Fritz Baumann, assistant professor in the Department of Physiology, University of Geneva School of Medicine, who contributed to this work with innumerable suggestions and precious advice. I also wish to thank Professors Ch. Rouiller and J. Posternak for constant support, and Mrs. A. Perrelet-Bridges for the correction of the English manuscript. Fig. 1 was done by R. Mira and the photographical work by Mrs. M. Sidler whose skilful assistance is gratefully acknowledged.

This work was supported by a grant from the “Fonds National Suisse de la Recherche Scientifique”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrelet, A. The fine structure of the retina of the honey bee drone. Z. Zellforsch. 108, 530–562 (1970). https://doi.org/10.1007/BF00339658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339658

Key-Words

Navigation