Skip to main content
Log in

The influence of thermal diffusion on laser ablation of metal films

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single-shot ablation thresholds of nickel and gold films in the thickness range from 50 nm to 7 μm have been measured for 14 ns laser pulses at 248 nm, using photoacoustic shock wave detection in air. The metal films were deposited on fused silica substrates. The ablation threshold was found to increase linearly with film thickness up to the thermal diffusion length of the film. Beyond this point it remains independent of film thickness. The proportionality between threshold fluence and thickness allows the prediction of ablation thresholds of metal films from the knowledge of their optical properties, evaporation enthalpies and thermal diffusivities. Physically it proves that ablation is driven by the energy density determined by the thermal diffusion length. A simple thermodynamic model describes the data well. Thermal diffusivities, an essential input for this model, were measured using the technique of transient thermal gratings. In addition, the substrate dependence of the ablation threshold was investigated for 150 nm Ni films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Wood: Laser Damage in Optical Materials (Adam Hilger, Bristol 1986)

    Google Scholar 

  2. M. von Allmen: Laser-Beam Interactions with Materials, Springer Ser. Mater. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  3. I.W. Boyd: Laser Processing of Thin Films and Microstructures, Springer Ser. Mater. Sci., Vol. 3 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  4. E. Fogarassy, S. Lazare (eds.): Laser Ablation of Electronic Materials (Elsevier, Amsterdam 1992)

    Google Scholar 

  5. D. Bäuerle, B. Luk'yanchuk, P. Schwab, X.Z. Wang, E. Arenholz: [4], p.

    Google Scholar 

  6. S.V. Babu, G.C. D'Couto, F.D. Egitto: J. Appl. Phys. 72, 692 (1992) and references therein

    Google Scholar 

  7. J.H. Brannon, D. Scholl, E. Kay: Appl. Phys A 52, 160 (1991)

    Google Scholar 

  8. S. Küper, J. Brannon, K. Brannon: Appl. Phys. A 56, 43 (1993)

    Google Scholar 

  9. A.H. Guenther, J.K. Mciver: Thin Solid Films 163, 403 (1988)

    Google Scholar 

  10. D.L. Decker, L.G. Koshigoe, E.G. Ashley: NBS Spec. Publ. 727, 291 (1986)

    Google Scholar 

  11. D. Ristau, X.C. Dang, J. Ebert: NBS Spec. Publ. 727, 298 (1986)

    Google Scholar 

  12. S.M.J. Akhtar, D. Ristau, J. Ebert: NIST Spec. Publ. 752, 345 (1988)

    Google Scholar 

  13. M.R. Lange, J.K. Mciver, A.H. Guenther: Thin Solid Films 125, 143 (1985)

    Google Scholar 

  14. M.Z. Fuka, J.K. Mciver, A.H. Guenther: NIST Spec. Publ. 801, 576 (1990)

    Google Scholar 

  15. J.M. Hicks, L.E. Urbach, E.W. Plummer, H.-L- Dai: Phys. Rev. Lett. 61, 2588 (1988)

    Google Scholar 

  16. J.O. Porteus, D.L. Decker, W.N. Faith, D.J. Grandjean, S.C. Seitel, M.J. Soileau: IEEE J. QE-17, 2078 (1981)

    Google Scholar 

  17. Y. Jee, M.F. Becker, R.M. Walser: J. Opt. Soc. Am. B 5, 648 (1988)

    Google Scholar 

  18. J.E. Andrew, P.E. Dyer, R.D. Greenough, P.H. Key: Appl. Phys. Lett. 43, 1076 (1983)

    Google Scholar 

  19. S. Petzoldt, A.P. Elg, M. Reichling, J. Reif, E. Matthias: Appl. Phys. Lett. 53, 2005 (1988)

    Google Scholar 

  20. A. Mandelis (ed.): Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York 1992)

    Google Scholar 

  21. D.L. Decker: NIST Spec. Publ. 752, 89 (1988)

    Google Scholar 

  22. J.C. Lambropoulos, M.R. Jolly, C.A. Amsden, S.E. Gilman, M.J. Sinicropi, D. Diakomihalis, S.D. Jacobs: J. Appl. Phys. 66, 4230 (1989)

    Google Scholar 

  23. R.T. Swimm: SPIE 1441, 45 (1991)

  24. J. Jauregui, E. Matthias: Appl. Phys. A 54, 35 (1992)

    Google Scholar 

  25. O.W. Käding, E. Matthias, R. Zachai, H.-J. Füßer, P. Münzinger: Diamond Relat. Mater. 2, 1185 (1993)

    Google Scholar 

  26. G. Busse, H.G. Walther: [20], p. Chap. 5,

    Google Scholar 

  27. H.J. Eichler, P. Günter, D.W. Pohl: Laser-Induced Dynamic Gratings, Springer Ser. Opt. Sci., Vol. 50 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  28. O. Käding, E. Matthias: Unpublished

  29. R.C. Weast (ed.): Handbook of Chemistry and Physics, 67th edn. (CRC, Boca Raton 1986–1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthias, E., Reichling, M., Siegel, J. et al. The influence of thermal diffusion on laser ablation of metal films. Appl. Phys. A 58, 129–136 (1994). https://doi.org/10.1007/BF00332169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332169

PACS

Navigation