Skip to main content
Log in

Expression of the Butyrivibrio fibrisolvens endo-β-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Recombinant Saccharomyces cerevisiae strains capable of simultaneous secretion of bacterial glucanase and pectinase enzymes have been developed. The Butyrivibrio fibrisolvens endo-β-1,4-glucanase gene (end1), the Erwinia chrysanthemi pectate lyase gene (pelE) and E. carotovora polygalacturonase gene (peh1) were each inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into yeast-centromeric shuttle vectors. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1 P ), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5 T ). Secretion of glucanase and pectinases was directed by the signal sequence of the yeast mating pheromone α-factor (MFα1 S ). These YCplac111-based constructs, designated END1, PEL5, and PEH1, respectively, were transformed into S. cerevisiae. The END1, PEL5 and PEH1 constructs were co-expressed in laboratory strains of S. cerevisiae as well as in wine and distillers' yeasts. DNA-RNA hybridization analysis showed the presence of END1, PEL5 and PEH1 transcripts. Carboxymethylcellulose and polypectate agarose assays revealed the production of biologically active endo-β-1,4-glucanase, pectate lyase and polygalac-turonase by the S. cerevisiae transformants. Interestingly, although the same expression-secretion cassette was used in all three constructs, time-course assays indicated that the pectinases were secreted before the glucanase. It is tempting to speculate that the bulkiness of the END1-encoded protein and the five alternating repeats of Pro-Asp-Pro-Thr(Gln)-Pro-Val-Asp within the glucanase moiety could be involved in the delayed secretion of the glucanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ammerer G (1983) Methods Enzymol 101:192–210

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Béguin P, Gilkes NR, Kilburn DG, Miller RC, O'Neil GP, Warren RAJ (1987) Crit Rev Biotechnol 6:129–162

    Google Scholar 

  • Beier RD, Young ET (1982) Nature 300:724–728

    Google Scholar 

  • Berger E, Jones WA, Jones DT, Wood DR (1989) Mol Gen Genet 219:193–198

    Google Scholar 

  • Beldman G, Rombouts FM, Voragen AGJ, Pilnik W (1984) Enzyme Microb Technol 6:503–507

    Google Scholar 

  • Bell TA, Etchells JL (1956) Appl Microbiol 4:196–202

    Google Scholar 

  • Bitter GA, Chen KK, Banks AR, Lai P (1984) Proc Natl Acad Sci USA 81:5330–5334

    Google Scholar 

  • Bitter GA, Egan KM, Koski RA, Jones MO, Elliott SG, Giffin JC (1989) Methods Enzymol 153:516–544

    Google Scholar 

  • Brake AJ (1990) Methods Enzymol 185:408–421

    Google Scholar 

  • Brown MR, Ough CS (1981) Am J Vitic Enol 32:272–276

    Google Scholar 

  • Coughlan MP (1989) Enzyme systems for lignocellulose degradation. Commission of the European Communities. Elsevier Applied Science, London

    Google Scholar 

  • Cowling EB, Kirk TK (1976) Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. In: Gaden EL Jr, Mandels MH, Reese ET, Spano LA (eds) Enzymatic conversion of cellulosic materials: technology and applications. John Wiley and Sons, New York, pp 95–123

    Google Scholar 

  • Denis CL, Ferguson J, Young ET (1983) J Biol Chem 258: 1156–1171

    Google Scholar 

  • Farkas V, Biely P, Bauer S (1973) Biochim Biophys Acta 321: 246–255

    Google Scholar 

  • Ghose TK (1987) Pure Appl Chem 59:257–268

    Google Scholar 

  • Gietz RD, Schiestl RH (1991) Yeast 7:253–263

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74:527–534

    Google Scholar 

  • Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Nature 293:717–722

    Google Scholar 

  • Hong JC, Nagao RT, Key JL (1990) J Biol Chem 265:2470–2475

    Google Scholar 

  • Innis MA, Gelfand DH, (1990) Optimizing of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, California, pp 3–12

    Google Scholar 

  • Janse BJH, Pretorius IS (1993) Curr Genet 24:32–37

    Google Scholar 

  • Keen NT, Dahlbeck D, Staskawicz B, Belser W (1984) J Bacteriol 159:825–831

    Google Scholar 

  • Klebl F, Tanner W (1989) J Bacteriol 171:6259–6264

    Google Scholar 

  • Kuranda MJ, Robbins P (1987) Proc Natl Acad Sci USA 84:2585–2589

    Google Scholar 

  • Kurjan J, Herskowitz I (1982) Cell 30:933–943

    Google Scholar 

  • Laing E, Pretorius IS (1992) Gene 121:35–45

    Google Scholar 

  • Laing E, Pretorius IS (1993a) J Appl Bacteriol 75:149–158

    Google Scholar 

  • Laing E, Pretorius IS (1993b) Appl MicrobiolBiotechnol 39: 181–188

    Google Scholar 

  • Luh BS, Phaff HJ (1951) Arch Biochem Biophys 33:212–227

    Google Scholar 

  • MacMillan JD, Sheiman MI (1980) Pectic enzymes. In: Whitaker JR (ed) Food related enzymes. American Chemical Society, Washington, D.C., pp 101–130

    Google Scholar 

  • Marcus A, Greenberg J, Averyhart-Fullard V (1991) Physiol Plant 81:273–279

    Google Scholar 

  • Mrsa V, Klebl F, Tanner W (1993) J Bacteriol 175:2102–2106

    Google Scholar 

  • Nebreda AR, Villa TG, Villanueva JR, del Rey F (1986) Gene 47:245–259

    Google Scholar 

  • Pilnik W, Rombouts FM (1979) Pectic enzymes. In: Blanshard JMV, Mitchell JR (eds) Polysaccharides in food. Butterworths, Boston, pp 109–126

    Google Scholar 

  • Pretorius IS, Van der Westhuizen TJ (1991) S Afr J Enol Vitic 12:3–31

    Google Scholar 

  • Pretorius IS, Chow T, Modena D, Marmur J (1986) Mol Gen Genet 203:29–35

    Google Scholar 

  • Pretorius IS, Laing E, Pretorius GHJ, Marmur J (1988) Curr Genet 14:1–8

    Google Scholar 

  • Rankine B (1991) The Aust Graper Winemaker 334:13

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Science 239:287–491

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd. edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Saulnier L, Brillouet J-M (1988) Carbohydr Res 182:63–78

    Google Scholar 

  • Southgate VJ, Steyn AJC, Pretorius IS, Van Vuuren HJJ (1993) Appl Environ Microbiol 59:1253–1258

    Google Scholar 

  • Steyn AJC, Pretorius IS (1991) Gene 100:85–93

    Google Scholar 

  • Teather RM, Wood PJ (1982) Appl Environ Microbiol 53:41–46

    Google Scholar 

  • Willis JW, Engwall JK, Chatterjee AK (1987) Phytopathology 77:1199–1205

    Google Scholar 

  • Wood TM, Garcia-Campayo V (1990) Biodegradation 1:147–161

    Google Scholar 

  • Wright RM, Yablonsky MD, Shalita ZP, Goyal AK, Eveleigh DE (1992) Appl Environ Microbiol 58:3455–3465

    Google Scholar 

  • Yablonsky MD, Bartley T, Elliston KO, Kahrs SK, Shalita ZP, Eveleigh DE (1988) FEMS Sym 43:249–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. S. Cox

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rensburg, P., van Zyl, W.H. & Pretorius, I.S. Expression of the Butyrivibrio fibrisolvens endo-β-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae . Curr Genet 27, 17–22 (1994). https://doi.org/10.1007/BF00326573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326573

Key words

Navigation