Skip to main content
Log in

Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ammerer G (1983) In: Wu R, Grossman L, Moldave K (eds) Methods Enzymol 101:192–201

  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1985) Agric Biol Chem 49:2521–2523

    Google Scholar 

  • Ashikara T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Agric Biol Chem 50:957–964

    Google Scholar 

  • Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412

    Google Scholar 

  • Ballance DJ (1986) Yeast 2:229–236

    Google Scholar 

  • Beggs JD (1978) Nature 275:104–109

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299

    Google Scholar 

  • Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655

    Google Scholar 

  • Dohmen RJ, Strasser AWM, Dahlems UM, Hollenberg CP (1990) Gene 95:111–121

    Google Scholar 

  • Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) J Gen Microbiol 136:913–920

    Google Scholar 

  • Gubler U, Hoffman BJ (1983) Gene 25:263–269

    Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139

    Google Scholar 

  • Hamilton R, Watanabe CK, de Boer HA (1987) Nucleic Acids Res 15:3581–3593

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    Google Scholar 

  • Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) Appl Microbiol Biotechnol 21:336–339

    Google Scholar 

  • Hejne G von (1983) Eur J Biochem 133:17–21

    Google Scholar 

  • Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH (1985) Science 228:21–26

    Google Scholar 

  • Irniger S, Egli CM, Braus GH (1991) Mol Cell Biol 11:3060–3069

    Google Scholar 

  • Itoh T, Ohtsuki I, Yamashita I, Fukui S (1987) J Bacteriol 169:4171–4176

    Google Scholar 

  • Joutsjoki V, Torkkeli T (1992) FEMS Microbiol Lett 99:237–244

    Google Scholar 

  • Kozak M (1981) Nucleic Acids Res 12:857–872

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Liljeström PL (1985) Nucleic Acids Res 13:7257–7268

    Google Scholar 

  • Jiljeström-Suominen PL, Joutsjoki V, Korhola M (1988) Appl Env Microbiol 54:245–249

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marshall JJ (1972) Wallerstein Labs Commun 35:49–98

    Google Scholar 

  • McCleary BV, Anderson MA (1980) Carbohydr Res 86:77–96

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • de Mot R, van Dijk K, Donkers A, Verachtert H (1985) Appl Microbiol Biotechnol 22:222–226

    Google Scholar 

  • Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innis MA (1984) Mol Cell Biol 4:2306–2315

    Google Scholar 

  • Panchal CJ, Russell J, Sills AM, Stewart GG (1984) Food Technol 38:99–106

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Suominen PL (1988) Characterization and applications of the yeast MEL1 gene. PhD thesis, University of Helsinki

  • Svensson B, Sierks MR, Jespersen H, Søgaard M (1991) Structure-function relationships in amylases. In: Friedman RB (ed) Biotechnology of amylodextrin oligosaccharides. American chemical society, Washington, DC, pp 128–143

    Google Scholar 

  • Tubb RS, Liljeström PL (1986) J Inst Brew 92:588–590

    Google Scholar 

  • Yamashita I, Itoh T, Fukui S (1985a) Appl Microbiol Biotechnol 23:130–133

    Google Scholar 

  • Yamashita I, Suzuki K, Fukui S (1985b) J Bacteriol 161:567–573

    Google Scholar 

  • Yamashita I, Nakamura M, Fukui S (1987) J Bacteriol 169:2142–2149

    Google Scholar 

  • Zagursky RJ, Berman ML, Baumeister K, Lomax N (1986) Gene Anal Tech 2:89–94

    Google Scholar 

  • Zaret KS, Sherman F (1982) Cell 28:563–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainio, A.E.I., Torkkeli, H.T., Tuusa, T. et al. Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae . Curr Genet 24, 38–44 (1993). https://doi.org/10.1007/BF00324663

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324663

Key words

Navigation