Skip to main content
Log in

Effects of hyperoxia on phagocytosis

  • Original Article
  • Published:
Blut Aims and scope Submit manuscript

Summary

The development of bacterial infections is a common complication during treatment with high concentrations of oxygen. To study the effect of hyperoxia on phagocytes, the adherence, chemotaxis, ingestion rates, degranulation as well as the bactericidal activity were measured in alveolar macrophages (AMs) and polymorphonuclear leukocytes (PMNs) obtained from guinea pigs exposed to 85% oxygen. The animal exposure to a Fi O2 of 85% impaired the adherence to nylon-wool, the chemotactic activity and the phagocytic rate of paraffinoil-droplets of AMs and PMNs. In AMs the secretion of β-glucuronidase upon stimulation with opsonized zymosan was also diminished. In addition, the bactericidal activity of AMs and PMNs demonstrated a reduction of 50%. These phagocytic defects may be caused by a cytoskeleton alteration, induced by the increase of oxygen derived metabolites, representing an additional sepsis promoting factor during hyperoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autor AP, Frank L, Roberts RJ (1976) Developmental characteristics of pulmonary superoxide dismutase: Relationship to idiopathic respiratory distress syndrome. Pediatr Res: 10 154

    Google Scholar 

  2. Baehner RL, Boxer LA, Allen JM, Davis J (1977) Autooxidation as a basis for altered function by PMN. Blood 50: 327

    Google Scholar 

  3. Biggar WD, Buran S, Holmes B (1976) Bacterial mechanisms in rabbit alveolar macrophages: evidence against peroxidase and hydrogen peroxide bacterial mechanisms. Infect Immun 14: 6

    Google Scholar 

  4. Bontan BW, Gowron R, Warshaw JB (1977) Neonatal redcell superoxide dismutase enzyme levels: Possible role as a cellular defense mechanism against pulmonary oxygen toxicity. Pediatr Res 11: 754

    Google Scholar 

  5. Boxer LA, Rister M, Allen JA, Baehner RL (1977) Improvement of Chediak-Higashi-leukocyte function by cyclic guanosine monophosphate. Blood 49: 9

    Google Scholar 

  6. Clark JM (1974) The toxicity of oxygen. Am Rev Respir Dis 110: 40

    Google Scholar 

  7. Crapo JD, Tierney DF (1974) Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol 226: 1401

    Google Scholar 

  8. Duc G (1975) Behandlung der neonatalen Hypoxie. Pädiatr Praxis 15 107

    Google Scholar 

  9. Feeney WH, Bermann ER (1978) Oxygen toxicity: Membrane damage by free radicals. Invest Ophthalmol 15: 789

    Google Scholar 

  10. Fisher AB, Diamond S, Mellen S (1974) Effect of O2 exposure on metabolism of the rabbit alveolar macrophage. J Appl Physiol 37: 341

    Google Scholar 

  11. Flohé L (1971) Die Glutathionperoxidase. Enzymologie und biologische Aspekte. Klin Wochenschr 12: 669

    Google Scholar 

  12. Fridovich L (1970) Quantitative aspects of the production of superoxide anion radical by mild xanthine oxidase. J Biol Chem 245: 4053

    Google Scholar 

  13. Fridovich I (1972) Superoxide radical and superoxide dismutase. Acc Chem Res 5: 321

    Google Scholar 

  14. Fridovich I (1975) Oxygen: Boon and bane. Am Sci 63: 54

    Google Scholar 

  15. Hill HR, Hogan NA, Thomas GM (1975) Evaluation of a cytocentrifuge method for measuring neutrophil granulocyte chemotaxis. J Lab Clin Med 86: 703

    Google Scholar 

  16. Huber T, La Force GLF (1970) Comparative effects of ozone and oxygen on pulmonary antibacterial defense mechanisms. Antimicrob Agents Chemother 10: 129

    Google Scholar 

  17. Keuth U, Feldmann EM, Althaus W, Fries N, Zemke M (1975) Erfolgreiche Behandlung neonataler Ateminsuffizienz mit kontinuierlich erhöhter transalveolärer Druckdifferenz. Pädiatr Praxis 16: 445

    Google Scholar 

  18. Ludwin SU, Northway WH, Bonson KG (1975) Oxygen toxicity in the newborn, necrotzing bronchiolitis in mice exposed to 100% oxygen. Lab Invest 31: 425

    Google Scholar 

  19. Malawista SE (1975) Microtubules and the mobilization of Lysosomes in phagocytizing human leukocytes. Ann NY Acad Sci 253: 738

    Google Scholar 

  20. Maxwell US (1964) In situ method for harvesting guinea pig alveolar macrophages. Am Rev Respir Dis 89: 579

    Google Scholar 

  21. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049

    Google Scholar 

  22. McCord JM, Keele Jr BB, Fridovich I (1971) An enzyme-based theory of obligate anaerobiasis: The physiological function of superoxide dismutase. Proc Natl Acad Sci USA 68: 1024

    Google Scholar 

  23. McGregor RR, Spagnnolo PJ, Lentek AA (1974) Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin measured with an assay system. N Engl J Med 291: 642

    Google Scholar 

  24. McGregor RR (1977) Granulocyte adherence changes induced by hemodialysis, endotoxin, epinephrine and glucocorticoids. Ann Intern Med 86: 35

    Google Scholar 

  25. McGregor RR, Macarak EJ, Kefalides NA (1978) Comparative adherence of granulocytes to endothelial monolayers and nylon fiber. J Clin Invest 61: 697

    Google Scholar 

  26. Misra HP, Fridovich I (1971) The generation of superoxide radical during the autooxidation of ferridoxins. J Biol Chem 246: 6886

    Google Scholar 

  27. Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. N Engl J Med 276: 357

    Google Scholar 

  28. Northway WH, Rezau L, Petriceks R, Bensch K (1976) Oxygen toxicity in the newborn lung: Reversal of inhibition of DNA synthesis in the mouse. Pediatrics 57: 41

    Google Scholar 

  29. Oliver JM, Albertini DF, Berlin RD (1976) Effects of Glutathione-Oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol 71: 921

    Google Scholar 

  30. Oliver JM, Zurier RB (1976) Correction of characteristic abnormalities of microtubule function and granule morphology in Chediak-Higashi-syndrome with cholinergic agonists. J Clin Invest 57: 1239

    Google Scholar 

  31. Pratt PC (1974) Pathology of pulmonary oxygen toxicity. Am Rev Respir Dis 110: 51

    Google Scholar 

  32. Quie PG, White JG, Holmes B, Good RA (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46: 688

    Google Scholar 

  33. Rister M, Baehner RL (1976) A comparative study of superoxide dismutase activity in polymorphonuclear leukocytes, monocytes, and alveolar macrophages of the guinea pig. J Cell Physiol 87: 345

    Google Scholar 

  34. Rister M, Baehner RL (1976) The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD (P) H cytochrome C reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. J Clin Invest 58: 117

    Google Scholar 

  35. Rister M, Baehner RL (1977) Effects of hyperoxia on superoxide anion and hydrogen peroxide production of polymorphonuclear leukocytes and alveolar macrophages. Br J Haematol 36: 241

    Google Scholar 

  36. Rister M, Baehner RL (1978) Neue Aspekte zur Toxizität des Sauerstoffs. Dtsch Med Wochenschr 23: 977

    Google Scholar 

  37. Rister M (1980) Phagozytosemechanismen alveolärer Makrophagen und Granulozyten. Blut 41: 257

    Google Scholar 

  38. Rister M (1980) The cellular basis of oxygen toxicity (Abstract). Pediatr Res 14: 167A

  39. Rosenbaum RM, Wittner M, Lenger M (1969) Mitochondrial and other ultrastructural changes in great alveolar cells of oxygen-adapted and poisoned rats. Lab Invest 20: 516

    Google Scholar 

  40. Stopfkuchen H, Eckert H-G, Emmrich P, Tröger J (1979) Komplikationen und Überlebensraten bei mechanisch beatmeten Früh-und Neugeborenen. Monatschr Kinderheilkd 127: 454

    Google Scholar 

  41. Stossel TP (1973) Evaluation of opsonic and leukocyte function with a spectrophotometric test in patients with infection and phagocytic disorders. Blood 42: 121

    Google Scholar 

  42. Wolff LJ, Boxer LA, Allen JM, Baehner RL (1978) The selective effect of hyperoxia on the guinea pig. J Reticuloendothel Soc 24: 381

    Google Scholar 

  43. Yamamoto E, Wittner M, Rosenbaum RM (1970) Resistance and susceptibility to oxygen toxicity by cell types of the gas-blood barriw of the rat lung. Am J Pathol 59: 409

    Google Scholar 

  44. Zurier RB, Weismann G, Hoffstein S, Kammermann S, Tai HH (1974) Mechanismus of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest 53: 297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft Ri 275/5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rister, M. Effects of hyperoxia on phagocytosis. Blut 45, 157–166 (1982). https://doi.org/10.1007/BF00320800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320800

Key words

Navigation