Skip to main content
Log in

Development of the supporting cells and structures derived from them in the inner ear of the grass frog, Rana temporaria (Amphibia, Anura)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The inner ear of Rana t. temporaria comprises sensory structures with various special functions, i.e., the detection of spatial orientation (utricle, saccule, lagena), of rotation (ampullae), and of acoustic signals (amphibian and basilar papillae). In each of these structures, there is a sensory epithelium made up of hair (sensory) cells and supporting cells. As the supporting cells differentiate, they produce the organic matrix of the otoconia in the gravity-sensing organs, the ground substance of the cupulae in the ampullae, and the ground substance of the tectorial membranes in the auditory papillae. The supporting cells associated with these various derivative structures have correspondingly different cytoplasmic properties. The preotoconia are formed by extrusion; the otoconia develop from these filamentous precursors by growth and calcium deposition. The organic material that forms the cupulae and tectorial membranes is released from the supporting cells by exocytosis. The organization of this material into the ground substance is initiated mainly around the distal ends of the hair-cell kinocilia, eventually giving rise to the marked morphological differences that distinguish the cupulae from the tectorial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bb :

basal body

c :

cilia

ca :

crista ampullaris

ch :

chromosome

cu :

cupula

d :

dictyosome

hc :

hair cell

kc :

kinocilia

ld :

lipid droplet

m :

mitochondrion

ma :

main axis

mb :

multilamellated body

mc :

macula communis

mi :

mitosis

mv :

microvillus

n :

nucleus

on :

organic net

pa :

amphibian papilla

pb :

basilar papilla

pg :

pigment granule

po :

preotoconia

rer :

rough endoplasmic reticulum

s :

saccule

sc :

supporting cell

sci :

stereocilia

sd :

spot desmosome

t :

tegmentum

tf :

tonofilaments

tj :

tight junction

tm :

tectorial membrane

yp :

yolk platelet

References

  • Alfs B (1978) Elektronenmikroskopische Untersuchungen zur Ultrastruktur der Sinnesendstellen im Labyrinth des Laubfrosches Hyla arborea savignyi (Audouin). Zool Anz 200:145–172

    Google Scholar 

  • Alfs B, Schneider H (1973) Vergleichende anatomische Untersuchungen am Labyrinth zentraleuropäischer Froschlurcharten (Anura). Z Morphol Tiere 76:129–143

    Google Scholar 

  • Anniko M (1980a) Development of otoconia. Am J Otolaryngol 1:400–410

    Google Scholar 

  • Anniko M (1980b) Embryogenesis of the inner ear. III. Formation of the tectorial membrane in vivo and in vitro. Anat Embryol 160:301–313

    Google Scholar 

  • Anniko M (1983) Embryonic development of vestibular sense organs and their innervation. In: Romand R (ed) Development of auditory and vestibular systems. Academic Press, New York, London, pp 375–424

    Google Scholar 

  • Anniko M, Nordemar H (1982) Formation of the cupula. Comparative studies on development in vivo and in vitro. Am J Otolaryngol 3:31–40

    Google Scholar 

  • Anniko M, Nordemar H, Van de Water TR (1979) Embryogenesis of the inner ear. 1. Development and differentiation of the mammalian crista ampullaris in vivo and in vitro. Arch Otorhinolaryngol 224:285–299

    Google Scholar 

  • Carlström B, Engström H (1955) The ultrastructure of statoconia. Acta Otolaryngol 45:14–18

    Google Scholar 

  • Carlström B, Engström H, Hjorth S (1953) Electron microscopic and X-ray diffraction studies of statoconia. Laryngoscope 63:1052–1057

    Google Scholar 

  • Chuang HH (1959) Experiments concerning the induction and morphogenesis of the otic vesicle in urodelian amphibian. Acta Biol Exp Sinica 6:352–363

    Google Scholar 

  • Detwiler SR (1948) Further quantitative studies on locomotor capacity of larval Amblystoma following surgical procedures upon the embryonic brain. J Exp Zool 108:45–74

    Google Scholar 

  • Detwiler SR, Van Dyke RH (1950) The role of the medulla in the differentiation of the otic vesicle. J Exp Zool 113:197–199

    Google Scholar 

  • Frishkopf LS, Flock A (1966) Ultrastructure of the basilar papilla in the bullfrog. J Acoust Soc Amer 40:1262

    Google Scholar 

  • Geisler CD, Van Bergeijk (1964) The inner ear of the bullfrog. J Morphol 114:53–58

    Google Scholar 

  • Ginzberg RD, Gilula NB (1977) A correlation between gap-junctions and synaptogenesis in the developing chicken otocyst. J Cell Biol 75:38a

    Google Scholar 

  • Ginzberg RD, Gilula NB (1979) Modulation of cell junctions during differentiation of the chicken otocyst sensory epithelium. Dev Biol 68:110–129

    Google Scholar 

  • Harada Y (1979) Formation area of statoconia. In: Becker RP, Johari O (eds) Scanning electron microscopy 3 SEM. O'Hara, Illinois, pp 963–966

    Google Scholar 

  • Hertzog E (1925) Über die Entstehung der Otolithen. Z Hals-, Nasen-Ohrenheilk 12:413–416

    Google Scholar 

  • Huschke E (1845) Traité de splanchnologie et des organes des sense. Bailiére, Paris

    Google Scholar 

  • Igarashi M, Kanda T (1969) Fine structure of the otolithic membrane in the squirrel monkey. Acta Oto-Rhino-Laryngol 63:43–52

    Google Scholar 

  • Kellerhals H, Martine E, Villinger W (1970) Surface view of the guinea pig otolith membrane. Pract Oto-Rhino-Laryngol 32:65–73

    Google Scholar 

  • Kopsch F (1953) Die Entwicklung des braunen Grasfrosches Rana fusca Roesel. Thieme, Stuttgart

    Google Scholar 

  • Larsell G (1933) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527

    Google Scholar 

  • Li CW, Van de Water TR, Ruben RJ, Shea CA (1978) Rhombencephalic induction of the differentiation of the tenth gestation day mouse otocyst. Assoc Res Otolaryngol Midwinter Meeting. Clearwater, Florida 1978

  • Lim DJ (1973) Formation and fate of otoconia. Ann Otol Rhinol Laryngol 82:23–35

    Google Scholar 

  • Lim DJ (1974) The statoconia of the non mammalian species. Brain Behav Evol 10:23–35

    Google Scholar 

  • Lim DJ (1980) Morphogenesis and malformation of otoconia. A review. In: Gorlin RJ (ed) Original Article Series 16. Liss, New York

    Google Scholar 

  • Neubert J (1979) Ultrastructural development of the vestibular system under conditions of simulated weightlessness. Aviat Space Environ Med 50:1058–1061

    Google Scholar 

  • Neubert J, Briegleb W (1981) Changes in the microstructure of the vestibular apparatus of tadpoles (Rana temporaria) developed in simulated weightlessness. Adv Space Res 1:151–157

    Google Scholar 

  • Parsons J, Cardell RR (1965) Analysis of statoliths by X-ray diffraction and emission spectroscopy. Trans Am Microsc Soc 84:415–421

    Google Scholar 

  • Preston RE, Johnsson LG, Hill JH, Schacht J (1975) Incorporation of radioactive calcium into otolithic membranes and middle ear ossicles of the gerbil. Acta Oto Laryngol 80:269–275

    Google Scholar 

  • Ross MD (1979) Calcium into uptake and exchange in otoconia. Adv Oto Rhino Laryngol 25:26–33

    Google Scholar 

  • Salamat MS, Ross MD, Peacor DR (1980) Otoconial formation in the fetal rat. Ann Otol Rhinol Laryngol 89:229–238

    Google Scholar 

  • Sharp B (1885) Homologies of the vertebrate crystalline lens. Proc Acad Nat Sci Philadelphia 300–310

  • Sticht N van der (1908) L'istogenese des parties constituants du neuroepithelium acoustique. Arch Biol 23:541–693

    Google Scholar 

  • Thorn L (1975) Die Entwicklung des Cortischen Organs beim Meerschweinchen. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Vinnikov YA, Gazenko OG, Lychakov DV, Palmbach LR (1983) Formation of the vestibular apparatus in weightlessness. In: Romand (ed) Development of the auditory and vestibular systems. Academic Press, New York, London, pp 537–560

    Google Scholar 

  • Waddington CH (1937) The determination of the auditory placode in the chicken. DLV Biol 14:232–239

    Google Scholar 

  • Weissenfels N (1982) Rasterelektronenmikroskopische Histologie von spongösem Material. Microscopica Acta 85:345–350

    Google Scholar 

  • Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta Oto Laryngol 126:1–85

    Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, Berlin, Heidelberg, New York, pp 123–170

    Google Scholar 

  • Wever EG (1973) The ear and hearing in the frog, Rana pipiens. J Morph 141:461–478

    Google Scholar 

  • Witschi E (1949) The larval ear of the frog and its transformation during metamorphosis. Z Naturforsch 4b:230–242

    Google Scholar 

  • Yokoh Y (1971) Early formation of nerve fibers in the human otocyst. Acta Anat 80:90–106

    Google Scholar 

  • Yokoh Y (1974) On sensory cells in the human otocyst. Acta Anat 87:72–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertwig, I., Schneider, H. Development of the supporting cells and structures derived from them in the inner ear of the grass frog, Rana temporaria (Amphibia, Anura). Zoomorphology 106, 137–146 (1986). https://doi.org/10.1007/BF00312202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312202

Keywords

Navigation