Skip to main content

Advertisement

Log in

Mechanical twinning in diopside Ca(Mg,Fe)Si2O6: Structural mechanism and associated crystal defects

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Diopside twins mechanically on two planes, (100) and (001), and the associated macroscopic twinning strains are identical (Raleigh and Talbot, 1967). An analysis based on crystal structural arguments predicts that both twin mechanisms involve shearing of the (100) octahedral layers (containing Ca2+, Mg2+ and Fe2+ ions) by a magnitude of c/2. Small adjustments or shuffles occur in the adjacent layers containing the [SiO4]4− tetrahedral chains. While the (100) twins are conventional with shear parallel to the composition plane, this analysis predicts that (001) twins form by a mechanism closely related to kinking.

A polycrystalline diopside specimen was compressed 8% at a temperature of 400° C, a pressure of 16 kilobars, and a compressive strain rate of about 10−4/s. Transmission electron microscopy on this specimen has revealed four basic lamellar features:

  1. 1)

    (100) mechanical twin lamellae;

  2. 2)

    (100) glide bands containing unit dislocations;

  3. 3)

    (001) twin lamellae;

  4. 4)

    (101) lamellar features, not as yet identified.

The (001) twins often contain remnant (100) lamellae of untwinned host. Twinning dislocations occur in these (100) lamellae and in the (001) twin boundaries with very high densities. Diffraction contrast experiments indicate that the twinning dislocations associated with both twin laws glide on (100) with Burgers vector b=X [001] where X is probably equal to 1/2 on the basis of the structural analysis.

Parallels are drawn between mechanical twinning in clinopyroxenes and clinoamphiboles. The exclusive natural occurrence of basal twins in shock-loaded clinopyroxenes and of analogous (\(\bar 1\)01) twins in clinoamphiboles is given a simple explanation in terms of the relative difficulty of the “kinking” mechanism as compared to direct glide parallel to the composition plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F.D.: An experimental investigation into the action of differential pressure on certain minerals and rocks, employing the process suggested by Professor Kick. J. Geol. 18, 489–525 (1910)

    Google Scholar 

  • Bloss, F.D., Papike, J.J., eds.: High temperature crystal chemistry. Am. Mineralogist 58, 577–704 (1973)

    Google Scholar 

  • Borg, I.: Some shock effects in granodiorite to 270 kilobars at the Piledriver site. Am. Geophys. Union Geophys. Mon. 16, 293–311 (1972)

    Google Scholar 

  • Brown, W.L., Morimoto, N., Smith, J.V.: A structural explanation of the polymorphism and transitions of MgSiO3. J. Geol. 69, 609–616 (1961)

    Google Scholar 

  • Buck, P.: Verformung von Hornblende-Einkristallen bei Drücken bis 21 kb. Contrib. Mineral. Petrol. 28, 62–71 (1970)

    Google Scholar 

  • Buck, P., Paulitsch, P.: Experimentelle Verformung von Glimmer- und Hornblende-Einkristallen. Naturwissenschaften 56, 460 (1969)

    Google Scholar 

  • Buerger, M.J.: The genesis of twin crystals. Am. Mineralogist 30, 469–482 (1945)

    Google Scholar 

  • Burnham, C.W., Clark, J.R., Papike, J.J., Prewitt, C.T.: A proposed crystallographic nomenclature for clinopyroxene structures. Z. Krist. 125, 109–119 (1967)

    Google Scholar 

  • Cahn, R.W.: Twinned crystals. Phil. Mag., Suppl. 3, 363–445 (1954)

  • Cameron, M., Sueno, S., Prewitt, C.T., Papike, J.J.: High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Am. Mineralogist 58, 594–618 (1973)

    Google Scholar 

  • Chao, E.C.T.: Shock effects in certain rock-forming minerals. Science 156, 192–202 (1967)

    Google Scholar 

  • Clark, J.R., Appleman, D.E., Papike, J.J.: Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral. Soc. Am. Spec. Papers 2, 31–50 (1969)

    Google Scholar 

  • Coe, R.S., Kirby, S.H.: The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib. Mineral. Petrol. 52, 29–55 (1975)

    Google Scholar 

  • Deer, W., Howie, R.A., Zussman, J.: Rock-Forming Minerals, Vol. 2, Chain Silicates, p. 2. New York: John Wiley 1963

    Google Scholar 

  • Dollinger, G., Blacic, J.D.: Deformation mechanisms in experimentally and naturally deformed amphiboles. Earth and Planet. Sci. Letters 26, 409–416 (1975)

    Google Scholar 

  • Friedel, J.: Mechanical twinning. Ch. 6.7. In: Dislocations, pp. 173–177. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1964

    Google Scholar 

  • Green, H.W. II., Griggs, D.T., Christie, J.M.: Syntectonic and annealing recrystallization of finegrained quartz aggregates. In: Experimental and Natural Rock Deformation (Sander Volume), P. Paulitsch, ed., pp. 272–336. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Griggs, D.T., Turner, F.J., Heard, H.C.: Deformation of rocks at 500 to 800° C. In: Rock Deformation, Geological Society of America Memoir 79, D.T. Griggs and J. Handin, eds., pp. 56–61 (1960)

  • Holser, W.T.: Relation of symmetry to structure in twinning, Zeit. Krist. 110, 249–265 (1958)

    Google Scholar 

  • Hornemann, U., Müller, W.F.: Shock-induced deformation twins in clinopyroxene. Neues Jahrb. Mineral. Monatsh. 247–256 (1971)

  • Jawson, M.A., Dove, D.B.: The crystallography of deformation twinning. Acta Cryst. 13, 232–240 (1960)

    Google Scholar 

  • Kirby, S.H.: The role of crystal defects in the shear-induced transformation of orthoenstatite to clinoenstatite. In: Applications of Electron Microscopy. In: Mineralogy, H.-R. Wenk, ed., pp. 465–472. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Kirby, S.H., Christie, J.M.: A comparative study of two modes of deformation twinning in diopside (abstract). Trans. Am. Geophys. Union 53, 727 (1972)

    Google Scholar 

  • McCormick, J.W.: Computer simulation of dislocation images in quartz. In: Applications of Electron Microscopy in Mineralogy. pp. 113–122. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Mügge, O.: Über künstliche Zwillingsbildung durch Druck am Antimon, Wismuth und Diopsid. Neues Jahrb. Mineral. Geol. u. Paleont. 1, 181–191 (1886)

    Google Scholar 

  • Pabst, A.: Transformation of indices in twin gliding. Bull. Geol. Soc. Am. 66, 897–912 (1955)

    Google Scholar 

  • Papike, J.J., Ross, M., Clark, J.R.: Crystal-chemical characterization of clinoamphiboles based on five new structure refinements. Mineral. Soc. Am. Spec. Papers 2, 117–136 (1969)

    Google Scholar 

  • Raleigh, C.B.: Glide mechanisms in experimentally deformed minerals. Science 150, 739–741 (1965)

    Google Scholar 

  • Raleigh, C.B., Talbot, J.L.: Mechanical twinning in naturally and experimentally deformed diopside. Am. J. Sci. 265, 151–165 (1967)

    Google Scholar 

  • Rooney, T.P., Gavasci, A.T., Riecker, R.E.: Mechanical twinning in experimentally and naturally deformed hornblende. Air Force Cambridge Research Laboratories Environmental Research Papers No. 484, 21 p. (1974)

  • Rooney, T.P., Riecker, R.E.: Constant strain rate deformation of amphibole minerals. Air Force Cambridge Research Laboratories Environmental Research Papers No. 430, 35 pp. (1973)

  • Rooney, T.P., Riecker, R.E., Gavasci, A.T.: Hornblende deformation features. Geology 3, 364–366 (1975)

    Google Scholar 

  • Rooney, T.P., Riecker, R.E., Ross, M.: Deformation twins in hornblende. Science 169, 173–175 (1970)

    Google Scholar 

  • Sclar, C.B.: Shock metamorphism of lunar rocks and fines from Tranquility Base. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta 1, Suppl. 1, 849–864 (1970)

    Google Scholar 

  • Smyth, J.R.: Experimental study on the polymorphism of enstatite. Am. Mineralogist 59, 345–352 (1974)

    Google Scholar 

  • Turner, F.J.: Nature and dynamic interpretation of deformation in calcite of three marbles. Am. J. Sci. 251, 276–298 (1953)

    Google Scholar 

  • Wenk, H.-R.: Submicroscopical twinning in lunar and experimentally deformed pyroxenes. Contrib. Mineral. Petrol. 26, 315–323 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirby, S.H., Christie, J.M. Mechanical twinning in diopside Ca(Mg,Fe)Si2O6: Structural mechanism and associated crystal defects. Phys Chem Minerals 1, 137–163 (1977). https://doi.org/10.1007/BF00307315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307315

Keywords