Skip to main content
Log in

The epidermal permeability barrier

  • Review Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The permeability barrier of the skin which prevents transcutaneous water loss and penetration of harmful drugs from the environment is localized in the horny layer of the epidermis. Multiple lipid bilayers obstructing the intercellular space of the stratum corneum fulfill this function. In contrast to cellular membranes consisting predominantly of phospholipids, these lamellae contain mostly ceramides, cholesterol and free fatty acids. The lamellae are derived from the contents of lamellar granules (LGs) which are synthesized in the viable epidermal layers by the keratinocytes. LGs display stacks of small disks each of which represents a flattened vesicle or liposome. Prior to terminal differentiation, the disks are exocytosed into the intercellular space and fused to form uninterrupted sheetlike lamellae. The singular lipid composition of LG-disks and of stratum corneum-lamellae reflects the multistage process of barrier formation. It also renders these structures well suited to provide for a barrier function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham W, Wertz PW, Downing DT (1985) Linoleate-rich acylglucosylceramides of pig epidermis: structure determination by proton magnetic resonance. J Lipid Res 26:761–765

    Google Scholar 

  • Abraham W, Wertz PW, Landmann L, Downing DT (1987a) Oacylglucosylceramides and O-acylceramides cause aggregation and stacking of stratum corneum lipid liposomes. J Invest Dermatol 88:474

    Google Scholar 

  • Abraham W, Wertz PW, Landmann L, Downing DT (1987b) Stratum corneum lipid liposomes: Calcium-induced transformation into lamellar sheets. J Invest Dermatol 88:212–214

    Google Scholar 

  • Al-Saidan SMH, Winfield AJ, Selkirk AB (1987) Effect of preheating on the permeability of neonatal rat stratum corneum to alkanols. J Invest Dermatol 89:430–453

    Google Scholar 

  • Blank IH (1953) Further observations on factors which influence the water content of the stratum corneum. J Invest Dermatol 45:249–256

    Google Scholar 

  • Bowser PA, Nugteren DH, White RJ, Houtsmuller UMT, Prottey C (1985) Identification, isolation and characterization of epidermal lipids containing linoleic acid. Biochim Biophys Acta 834:419–128

    Google Scholar 

  • Breathnach AS, Goodman T, Stolinski C, Gross M (1973) Freezefracture replication of cells of stratum corneum of human epidermis. J Anat 114:65–81

    Google Scholar 

  • Breathnach AS, Wyllie LMA (1966) Osmium-iodide positive granules in spinous and granular layers of guinea pig epidermis. J Invest Dermatol 47:58–60

    Google Scholar 

  • Caputo R, Pelucchetti D (1977) The junctions of normal human epidermis. A freeze-fracture study. J Ultrastruct Res 61:44–61

    Google Scholar 

  • Chandrasekaran SK, Shaw JE (1978) Factors influencing the percutaneous absorption of drugs. Curr Probl Dermatol 7:142–155

    Google Scholar 

  • Collander R, Barlund H (1930) Permeability in Chara ceratophylla. II Permeability to nonelectrolytes. Acta Botan Fenn 11:1–114

    Google Scholar 

  • Cox P, Squier CA (1986) Variations in lipids in different layers of porcine epidermis. J Invest Dermatol 87:741–744

    Google Scholar 

  • Davson H, Danielli JF (1952) The permeability of natural membranes (2nd edn). Cambridge University Press, Cambridge

    Google Scholar 

  • Deamer DW, Bramhall J (1986) Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids 40:167–188

    Google Scholar 

  • Downing DT, Stewart ME, Wertz PW, Colton SW, Abraham W, Strauss JS (1987) Skin lipids: and update. J Invest Dermatol 88:2s-6s

    Google Scholar 

  • Elias PM (1981) Lipids and the epidermal permeability barrier. Arch Dermatol Res 270:95–117

    Google Scholar 

  • Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s-49s

    Google Scholar 

  • Elias PM, Brown BE (1978) The mammalian cutaneous permeability barrier: defective barrier function in essential fatty acid deficiency correlates with abnormal intercellular lipid deposition. Lab Invest 39:574–583

    Google Scholar 

  • Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65:180–191

    Google Scholar 

  • Elias PM, Goerke J, Friend DS (1977) Mammalian epidermal barrier lipids: composition and influence on structure. J Invest Dermatol 69:535–546

    Google Scholar 

  • Elias PM, McNutt NS, Friend DS (1977) Membrane alterations during cornification of mammalian squameous epithelia: a freeze-fracture, tracer, and thin-section study. Anat Rec 189:577–594

    Google Scholar 

  • Elias PM, Brown BE, Fritsch P, Goerke J, Gray M, White RJ (1979) Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum J Invest Dermatol 73:339–348

    Google Scholar 

  • Epstein EH, Williams ML, Elias PM (1981) Steroid sulfatase, X-linked ichthyosis, and stratum corneum cell cohesion. Arch Dermatol 117:761–763

    Google Scholar 

  • Farbman AI (1964) Electron microscope study of a small cytoplasmic structure in rat oral epithelium. J Cell Biol 21:491–497

    Google Scholar 

  • Fleischer R (1877) Untersuchungen über das Resorptionsvermögen der menschlichen Haut. Habilitationsschrift, Erlangen

    Google Scholar 

  • Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anaesthetics. J Mol Biol 133:469–500

    Google Scholar 

  • Frei FRI, Sheldon H (1961) A small granular component of the cytoplasm of keratinizing epithelia. J Biophys Biochem Cytol 11:719–724

    Google Scholar 

  • Frithiof L, Wersäll J, (1965) A highly ordered structure in keratinizing human oral epithelium. J Ultrastruct Res 12:371–379

    Google Scholar 

  • Golden GM, Guzek DB, Harris RR, McKie JE, Potts RO (1986) Lipid thermotropic transitions in human stratum corneum. J Invest Dermatol 86:255–259

    Google Scholar 

  • Goldsmith LA, Baden HP (1970) A uniquely oriented epidermal lipid. Nature 225:1052–1053

    Google Scholar 

  • Grant CWM, Melhorn IE, Florio E, Barber KR (1987) A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim Biophys Acta 909:169–177

    Google Scholar 

  • Gray GM, White RJ (1978) Glycosphingolipids and ceramides in human and pig epidermis. J Invest Dermatol 70:336–341

    Google Scholar 

  • Gray GM, Yardley HJ (1975) Different populations of pig epidermal cells: isolation and lipid composition. J Lipid Res 16:441–447

    Google Scholar 

  • Gray GM, White RJ, Williams RH, Yardley HJ (1982) Lipid composition of the superficial stratum corneum cells of the epidermis. Br J Dermatol 106:59–63

    Google Scholar 

  • Grayson S, Johnson-Winegar AG, Wintroub BU, Isseroff RR, Epstein EH, Elias PM (1985) Lamallar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J Invest Dermatol 85:289–294

    Google Scholar 

  • Grice KA (1980) Transepidermal water loss. In: Jarrett A (ed) The physiology and pathophysiology of the skin. Vol 6. Academic Press, London, pp 2116–2146

    Google Scholar 

  • Grubauer G, Finegold KR, Elias PM (1987) Relationship of epidermal lipogenesis to cutaneous barrier function. J Lipid Res 28:746–752

    Google Scholar 

  • Hansen HJ, Jensen B (1985) Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and α-linolenate. Biochim Biophys Acta 834:357–363

    Google Scholar 

  • Hashimoto K (1971) Cementsome, a new interpretation of the membrane coating granule. Arch Dermatol Forsch 240:349–364

    Google Scholar 

  • Hayward AF (1978) Ultrastructural changes in contents of membrane-coating granules after extrustion from epithelial cells of hamster cheek pouch. Cell Tissue Res 187:323–331

    Google Scholar 

  • Hayward AF (1979) Membrane-coating granules. Int Rev Cytol 59:97–127

    Google Scholar 

  • Homalle A (1853) Experiences physiologiques sur l'absorption par le tégument externe chez l'homme dans le bain. Union Méd 7:462–463

    Google Scholar 

  • Imokawa G, Akasaki S, Hattori M, Yoshizuka N (1986) Selective recovery of deranged water-holding properties by stratum corneum lipids. J Invest Dermatol 87:758–761

    Google Scholar 

  • Kalina M, Pease DC (1977) The preservation of ultrastructure in saturated phosphatidylcholines by tannic acid in model systems and type II pneumocytes. J Cell Biol 74:726–741

    Google Scholar 

  • King PJ (1962) Evaporation. Chem Proc Eng 43:69–73

    Google Scholar 

  • Kligman AM (1964) The biology of the stratum corneum. In: Montagna W, Lobitz WC (eds) The epidermis. Academic Press, New York, pp 387–433

    Google Scholar 

  • Lampe MA, Williams ML, Elias PM (1983) Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24:131–140

    Google Scholar 

  • Landmann L (1980) Lamellar granules in mammalian, avian and reptilian epidermis. J Ultrastruct Res 72:245–263

    Google Scholar 

  • Landmann L (1984) The epidermal permeability barrier. Comparison between in vivo and in vitro lipid structures. Eur J Cell Biol 33:258–264

    Google Scholar 

  • Landmann L (1986) Epidermal permeability barrier: transformation of lamellar granule-disks into intercellular sheets by a membrane-fusion process, a freeze-fracture study. J Invest Dermatol 87:202–209

    Google Scholar 

  • Landmann L, Wertz PW, Downing DT (1984) Acylglucosylceramide causes flattening and stacking of liposomes; an analogy for assembly of the epidermal permeability barrier. Biochim Biophys Acta 778:412–418

    Google Scholar 

  • Lavker RM (1976) Membrane coating granules: the fate of the discharged lamellae. J Ultrastruct Res 55:79–86

    Google Scholar 

  • Mackee GM, Sulzberger MB, Herrmann F, Baer RL (1945) Histologic studies on percutaneous penetration with special reference to the effect of vehicles. J Invest Dermatol 6:43–61

    Google Scholar 

  • Mackenzie IC (1969) Ordered structure of the stratum corneum of the mammalian skin. Nature 222:881–883

    Google Scholar 

  • Madison KC, Wertz PW, Strauss JS, Downing DT (1986) Lipid composition of cultured murine keratinocytes. J Invest Dermatol 87:253–259

    Google Scholar 

  • Madison KC, Swartzendruber DC, Wertz PW, Downing DT (1987) Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol 88:714–718

    Google Scholar 

  • Madison KC, Swartzendruber DC, Wertz PW, Downing DT (in press) Lamellar granule extrusion and stratum corneum intercellular lamellae in murine kerationcyte cultures. J Invest Dermatol

  • Marks R, Barton SP (1983) The significance of size and shape of corneocytes. In: Marks R, Plewig G (eds) Stratum corneum. Springer, Berlin, pp 161–170

    Google Scholar 

  • Martinez RI, Peters A (1971) Membrane-coating granules and membrane modifications in keratinizing epithelia. Am J Anat 130:93–120

    Google Scholar 

  • Matoltsy AG (1966) Membrane-coating granules of the epidermis. J Ultrastruct Res 15:510–515

    Google Scholar 

  • Matoltsy AG, Downes AM, Sweeney TM (1968) Studies of the epidermal water barrier. Part II. Investigation of the chemical nature of the water barrier. J Invest Dermatol 50:19–26

    Google Scholar 

  • Matoltsy AG, Parakkal FF (1965) Membrane-coating granules of keratinizing epithelia. J Cell Biol 24:297–307

    Google Scholar 

  • Melton JL, Wertz PW, Swartzendruber DC, Downing DT (1987) Effects of essential fatty acid deficiency on epidermal O-acylsphingolipds and transepidermal water loss in young pigs. Biochim Biophys Acta 921:191–197

    Google Scholar 

  • Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis. Ultrastructural localization by ioncapture cytochemistry. J Invest Dermatol 84:508–512

    Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: theory and in vitro experimental measurement. A I Ch E J 21:985–996

    Google Scholar 

  • Nugteren DH, Christ-Hazelhof E, van der Beek A, Houtsmüller UMT (1985) Metabolism of linoleic acid and other essential fatty acids in the epidermis of the rat. Biochim Biophys Acta 834:429–436

    Google Scholar 

  • Odland GF (1960) A submicroscopic granular component in human epidermis. J Invest Dermatol 34:11–15

    Google Scholar 

  • Odland GF, Holbrook K (1981) The lamellar granules of the epidermis. Curr Probl Dermatol 9:29–49

    Google Scholar 

  • Olah I, Röhlich P (1966) Phospholipidgranula im verhornenden Oesophagusepithel. Z Zellforsch 73:205–219

    Google Scholar 

  • Papahadjopoulos D, Jacobson K, Nir S, Isac T (1973) Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concening the effect of temperature and cholesterol. Biochim Biophys Acta 311:330–348

    Google Scholar 

  • Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    Google Scholar 

  • Prottey C (1976) Essential fatty acids and the skin. Br J Dermatol 94:579–587

    Google Scholar 

  • Prottey C, Hartop PJ, Black JG, McCormack JI (1976) The repair of impaired barrier function in rats by cutaneous application of linoleic acid. Br J Dermatol 94:13–21

    Google Scholar 

  • Ranasinghe AW, Wertz PW, Downing DT, MacKenzie IC (1986) Lipid composition of cohesive and desquamated corneocytes from mouse ear skin. J Invest Dermatol 86:187–190

    Google Scholar 

  • Rein H (1924) Experimentelle Studien über Elektroendosmose an überlebender menschlicher Haut. Z Biol 81:125–140

    Google Scholar 

  • Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195:743–753

    Google Scholar 

  • Rothman S (1943) The principles of percutaneous absorption. J Lab Clin Med 28:1305–1321

    Google Scholar 

  • Rothman S (1954) Percutaneous absorption. In: Rothman S (ed) Physiology and biochemistry of the skin. Chicago University Press, Chicago, pp 26–59

    Google Scholar 

  • Schaefer H, Zesch A, Stüttgen G (1982) Skin permeability. Springer, Berlin

    Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin: a review of major concepts. Physiol Rev 51:702–747

    Google Scholar 

  • Scheuplein RJ, Bronough RL (1983) Percutaneous absorption. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol II, Oxford University Press, New York, pp1255–1295

    Google Scholar 

  • Schmidt RF, Thews G (1983) Physiologie des Menschen. 21st edn, Springer, Berlin

    Google Scholar 

  • Schreiner E, Wolff K (1969) Permeabilität des epidermalen Interzellularraums für kleinmolekulares Protein. Arch Klin Exp Dermatol 235:78–88

    Google Scholar 

  • Schwenkenbecker A (1904) Das Absorptionsvermögen der Haut. Arch Anat Physiol 1904121–165

    Google Scholar 

  • Selby CC (1957) An electron microscopic study of thin sections of human skin. II. Superficial cell layers of footpad epidermis. J Invest Dermatol 29:131–149

    Google Scholar 

  • Sha'afi RI (1981) Permeability for water and other polar molecules. In: Bonting SL, de Pont JJHHM (eds) Membrane transport. Elsevier, Amsterdam, pp 29–60

    Google Scholar 

  • Smith HW, Clawes HA, Marshall EK (1919) Mustard gas. IV The mechanisms of absorption by the skin. J Pharmacol 13:1–30

    Google Scholar 

  • Smith WP, Christensen MS, Nacht S, Gans EH (1982) Effect of lipids on the aggregation and permeability of human stratum corneum. J Invest Dermatol 78:7–12

    Google Scholar 

  • Squier CA (1973) The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 43:160–177

    Google Scholar 

  • Squier CA (1982) Zinc iodide-osmium staining of membrane-coating granules in keratinized and non-keratinized mammalian oral epithelium. Archs Oral Biol 27:377–382

    Google Scholar 

  • Squier CA, Rooney L (1976) The permeability of keratinized and nonkeratinized oral epithelium to lanthanum in vivo. J Ultrastruct Res 54:286–295

    Google Scholar 

  • Stoughton RB, Clendenning RW, Kruse D (1960) Percutaneous absorption of nicotinic acid and derivatives. J Invest Dermatol 35:337–341

    Google Scholar 

  • Stein WD (1981) Permeability for lipophilic molecules. In: Bonting SL, de Pont JJHHM (eds) Membrane transport. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Swartzendruber DC, Wertz PW, Madison KC Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713

    Google Scholar 

  • Wahlberg JE (1973) Percutaneous absorption. Curr Probl Dermatol 5:1–36

    Google Scholar 

  • Weinstock M, Wilgram GF (1970) Fine-structural observations on the formation and enzymatic activity of keratinosomes in mouse tongue filiform papillae. J Ultrastruct Res 30:262–274

    Google Scholar 

  • Wertz PW (1986) Lipids of keratinizing tissues. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the Integument. Vol 2, Vertebrates. Springer, Berlin, pp 815–823

    Google Scholar 

  • Wertz PW, Downing DT (1982) Glycolipids in mammalian epidermis: structure and function in the water barrier. Science 217:1261–1262

    Google Scholar 

  • Wertz PW, Downing DT (1983a) The acylglucosylceramides of pig epidermis: structure determination. J Lipid Res 24:753–758

    Google Scholar 

  • Wertz PW, Downing DT (1983b) The glucosyceramides of pig epidermis: structure determination. J Lipid Res 24:1135–1139

    Google Scholar 

  • Wertz PW, Downing DT (1983c) Ceramides of pig epidermis: structure determination. J Lipid Res 24:759–765

    Google Scholar 

  • Wertz PW, Cho ES, Downing DT (1983) Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochim Biophys Acta 753:350–355

    Google Scholar 

  • Wertz PW, Downing DT, Freinkel RK, Traczyk TN (1984) Sphingolipids of the stratum corneum and lamellar granules of fetal rat epidermis. J Invest Dermatol 83:193–195

    Google Scholar 

  • Wertz PW, Miethke MC, Long SA, Strauss JS, Downing DT (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84:410–412

    Google Scholar 

  • Wertz PW, Abraham W, Landmann L, Downing DT (1986) Preparation of liposomes from stratum corneum lipids. J Invest Dermatol 87:582–584

    Google Scholar 

  • Wilgram GF (1965) Das Keratinosom: ein Faktor im Verhornungsprozess der Haut. Hautarzt 16:377–379

    Google Scholar 

  • Winsor T, Burch GE (1944) Differential roles of layers of human epigastric skin on diffusion rate of water. Arch Int Med 74:428–436

    Google Scholar 

  • Wolff K, Holubar K (1967) Odland-Körper, (Membrane-coating granules keratinosomen) als epidermale Lysosomen. Arch Klin Exp Dermatol 231:1–19

    Google Scholar 

  • Wolff K, Wolff-Schreiner E (1976) Trends in electron microscopy of skin. J Invest Dermatol 67:39–57

    Google Scholar 

  • Wolff-Schreiner E (1977) Ultrastructural cytochemistry of the epidermis. Int J Dermatol 16:77–102

    Google Scholar 

  • Yardley HJ (1983) Epidermal lipids. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol I Oxford University Press, New York, pp 363–381

    Google Scholar 

  • Yardley HJ, Goldstein DJ (1976) Changes in dry weight and projected area of human epidermal cells undergoing keratinization as determined by scanning interference microscopy. Br J Dermatol 95:621–626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landmann, L. The epidermal permeability barrier. Anat Embryol 178, 1–13 (1988). https://doi.org/10.1007/BF00305008

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305008

Key words

Navigation