Skip to main content
Log in

Immunocytochemical demonstration of S-antigen (arrestin) in the brain of the blowfly Calliphora vicina

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

S-Antigen (arrestin)-immunoreaction can be considered as a marker for retinal and extraretinal photoreceptors in both vertebrate and invertebrate species. The present immunocytochemical study with the blowfly Calliphora vicina revealed S-antigen immunoreaction in retinal photoreceptors and various groups of neurons bilaterally distributed in the optic lobes and in the proto-, deuto- and tritocerebrum. S-Antigen-immunoreactive processes and terminal formations were found in the lower division of the central body complex and in the neuropil of the mushroom body. Also neuropil regions of the optic lobe, the lamina, medulla and lobula displayed S-antigen-immunoreactive fibers which were arranged in different patterns. These immunocytochemical data suggest that extraocular photoreceptors may be located in various parts of the blowfly brain. They provide a structural basis for further experiments which are needed to identify definitely these elements as extraretinal photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen MF, Saunders DS, Bollenbacher WE, Gilbert LI (1984) In vitro reprogramming of the photoperiodic clock in an insect brain-retrocerebral complex. Proc Natl Acad Sci USA 81: 5881–5884

    Google Scholar 

  • Cymborowski B, Lewis RD, Hong SF, Saunders DS (1994) Circadian locomotor activity rhythms and their entrainment to lightdark cycles continue in flies (Calliphora vicina) surgically deprived of their optic lobes. J Insect Physiol (in press)

  • Dumortier B (1972) Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Insecta, Orthoptera): likely existence of two photoreceptive systems. J Comp Physiol 77:80–112

    Google Scholar 

  • Engelmann W, Honneger HW (1966) Tagesperiodische Schlupfrhythmik einer augenlosen Drosophila melanogaster Mutante. Naturwissenschaften 53:588

    Google Scholar 

  • Fleissner G (1982) Isolation of an insect clock. J Comp Physiol 149:311–316

    Google Scholar 

  • Fleissner G, Fleissner G, Frisch B (1993) A new type of putative non-visual photoreceptors in the optic lobe of beetles. Cell Tissue Res 273:435–445

    Google Scholar 

  • Foster RG, Garcia-Fernandez JM, Provencio I, De Grip WJ (1993) Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. J Comp Physiol A 172:33–45

    Google Scholar 

  • Frisch K von (1911) Beitrage zur Physiologie der Pigmentzellen in der Fischhaut. Pflueger's Arch Ges Physiol 138:319–387

    Google Scholar 

  • Godden DH (1973) A re-examination of circadian rhythmicity in Carausius morosus. J Insect Physiol 19:1377–1386

    Google Scholar 

  • Hagberg M (1986) Ultrastructure and central projections of extraocular photoreceptors in caddiesflies (Insecta, Trichoptera). Cell Tissue Res 245:643–648

    Google Scholar 

  • Hartwig HG, Oksche A (1982) Neurobiological aspects of extraretinal photoreceptive systems: structure and function. Experientia 38:991–996

    Google Scholar 

  • Helfrich C, Engelmann W (1983) Circadian rhythm of the locomotor activity in Drosophila melanogaster and its “sine oculis” and “small optic lobes” mutants. Physiol Entomol 8:257–272

    Google Scholar 

  • Helfrich C, Cymborowski B, Engelmann W (1985) Circadian activity rhythm of the house fly continues after optic tract severance and lobectomy. Chronobiol Intern 2:19–32

    Google Scholar 

  • Hofbauer A, Buchner E (1989) Does Drosophila have seven eyes? Naturwissenschaften 76:335–336

    Google Scholar 

  • Koehler WK, Fleissner G (1978) Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature 274:708–710

    Google Scholar 

  • Korf HW, Wicht H (1992) Receptor and effector mechanisms in the pineal organ. In: Ermisch A, Landgraf R, Rühle HJ (eds) Progress in brain research, vol 91. Elsevier Amsterdam, pp 285–297

    Google Scholar 

  • Korf HW, Møller M, Gery J, Zigler JS, Klein DC (1985) Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammlian species. Cell Tissue Res 239:81–85

    Google Scholar 

  • Korf HW, Oksche A, Ekström P, Van Veen T, Zigler JS, Gery I, Klein DC (1986) S-antigen immunocytochemistry. In: O'Brian P, Klein DC (eds) Pineal and retinal relationships. Academic Press, Orlando, pp 343–355

    Google Scholar 

  • Korf HW, White BH, Schaad NC, Klein DC (1992) Recoverin in pineal organs and retinae of various vertebrate species including man. Brain Res 595:57–66

    Google Scholar 

  • Lees AD (1964) The location of the photoperiodic receptors in the aphid Megoura viciae Buckton. J Exp Biol 67:117–135

    Google Scholar 

  • Lieb WE, Smith LL, Dua HS, Christensen AC, Donoso LA (1991) Identification of an S-antigen molecule in Drosophila melanogaster. Exp Eye Res 53:171–178

    Google Scholar 

  • Loher W (1972) Circadian control of stridulation in the cricket, Teleogryllus commodus Walker. J Comp Physiol 79:173–190

    Google Scholar 

  • Loher W, Chandrashekeran MK (1970) Circadian rhythmicity in the oviposition of the grasshopper Chorthippus curtippenis. J Insect Physiol 16:1677–1688

    Google Scholar 

  • Mirshahi M, Faure JP, Brisson P, Falcon J, Guerlotte J, Collin JP (1984) S antigen immunoreactivity in retinal rods and cones and pineal photosensitive cells. Biol Cell 52:195–198

    Google Scholar 

  • Mirshahi M, Boucheix C, Collenot G, Thillaye B, Faure JP (1985) Retinal S-antigen epitopes in vertebrate and invertebrate photoreceptors. Invest Ophthalmol Vis Sci 26:1016–1021

    Google Scholar 

  • Nässel RD (1987) Aspects of the functional and chemical anatomy of the insect brain. In: Ali MA (ed) Nervous systems of invertebrates. Plenum Press, New York, pp 353–392

    Google Scholar 

  • Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Progr Neurobiol 37:179–254

    Google Scholar 

  • Nässel DR, Holmquist MH, Hardie RC, Hakanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies, Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646

    Google Scholar 

  • Nässel DR, Shiga S, Wikstrand EM, Ranga Rao K (1991) Pigment-dispersing hormone-immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system. Cell Tissue Res 266:511–523

    Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1968) Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythms. Z Vergl Physiol 58:1–13

    Google Scholar 

  • Oksche A, Hartwig HG (1975) Photoneuroendocrine systems and the third ventricle. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-Endocrine Interaction II. The ventricular system in neuroendocrine mechanisms. Karger, Basel, pp 40–53

    Google Scholar 

  • Page TL (1982) Extraretinal photoreception in entrainment and photoperiodism in invertebrates. Experientia 38:1007–1013

    Google Scholar 

  • Pfister C, Chabre M, Plouet J, Tuyen VV de Kozak Y, Faure JP, Kühn H (1985) Retinal S-antigen identified as the 48 K protein regulating light-dependent phosphodiesterase in rods. Science 228:891–893

    Google Scholar 

  • Pulvermüller A, Palczewski K, Hofmann KP (1993) Interaction between photoactivated rhodopsin and its kinase: Stability and kinetics of complex formation. Biochemistry 32:14082–14088

    Google Scholar 

  • Roberts SK (1965) Photoreception and entrainment of cockroach activity rhythms. Science 148:958–959

    Google Scholar 

  • Saunders DS (1987) Maternal influence on the incidence and duration of larval diapause in Calliphora vicina. Physiol Entomol 12:331–338

    Google Scholar 

  • Schraermeyer U, Stieve H, Rack M (1993) Cyclic 3′, 5-nucleotide phosphodiesterase: cytochemical localization in photoreceptor cells of the fly Calliphora erythrocephala. J Neurocytol 22:845–853

    Google Scholar 

  • Schultz WD, Schlüter U, Seifert G (1984) Extraocular photoreceptors in the brain of Epilachna varivestis (Coleoptera, Coccinellidae). Cell Tissue Res 236:317–320

    Google Scholar 

  • Tomioka K, Chiba Y (1984) Effects of nymphal stage optic nerve severance or optic lobe removal on the circadian locomotor rhythm of the cricket Gryllus bimaculatus. Zool Sci 1:385–394

    Google Scholar 

  • Truman JW (1972) Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol 81:99–114

    Google Scholar 

  • Truman JW (1974) Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoth. J Comp Physiol 95:281–296

    Google Scholar 

  • Truman JW, Riddiford LM (1970) Neuroendocrine control of ecdysis in silkmoths. Science 167:1624–1626

    Google Scholar 

  • Underwood H, Groos G (1982) Vertebrate circadian rhythms: retinal and extraretinal photoreception. Experientia 38:1013–1021

    Google Scholar 

  • Van Veen T, Eloffson R, Hartwig HG, Gery I, Mochizuki M, Cena V, Klein DC (1986a) Retinal S-antigen: immunocytochemical and immunochemical studies on the distribution in animal photoreceptors and pineal organs. Exp Biol 45:15–25

    Google Scholar 

  • Van Veen T, Östholm T, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC (1986b) α-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci USA 83:912–916

    Google Scholar 

  • Vaz Nunes M, Kenny NAP, Saunders DS (1990) The photoperiodic clock in the blowfly Calliphora vicina. J Insect Physiol 36:61–67

    Google Scholar 

  • Wheeler DA, Hamblen-Coyle MJ, Dushay MS, Hall JC (1993) Behavior in light-dark cycles of Drosophila mutants that are arhythmic, blind, or both. J Biol Rhythms 8:67–94

    Google Scholar 

  • Williams CM, Adkisson PL (1964) Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm Antheraea pernyi. Biol Bull 127:511–525

    Google Scholar 

  • Zerr DM, Hall JC, Rosbach M, Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10:2749–2762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cymborowski, B., Korf, H.W. Immunocytochemical demonstration of S-antigen (arrestin) in the brain of the blowfly Calliphora vicina . Cell Tissue Res 279, 109–114 (1995). https://doi.org/10.1007/BF00300697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300697

Key words

Navigation