Skip to main content
Log in

Hydrolysis of G6P by a microsomal aspecific phosphatase and glucose phosphorylation by a low K m hexokinase in the digestive gland of the crab Carcinus maenas: variations during the moult cycle

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

The hydrolysis of glucose-6-phospate in the digestive gland of the crab Carcinus maenas is carried out by an aspecific phosphatase. This enzyme possesses the following features: (1) insensitivity to acid treatment; (2) absence of inhibition when exposed to citrate at low pH; (3) similar affinity for G6P as the acid phosphatase for Na-β-glycerophosphate (K m 2.3 and 2.0 mM, respectively). Glucose-6-phosphate and Na-β-glycerophate hydrolysis reactions seem to be catalysed by the same enzyme, since both activities exhibit the same distribution in a subcellular fractionation of the gland. Furthermore, as these activities are principally recovered in the subcellular fraction enriched in calcospherites (or calcium phosphate granules), it is proposed that the aspecific G6P-phosphohydrolase could play a major role in the formation of these granules. The phosphorylation of glucose is made by two “low K m” hexokinases (230 and 64 μM, respectively). As their level of activity shows significant changes over the moult cycle, these enzymes could be considered as having a regulatory role in the storage of glucose in the digestive gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acid Pase:

aspecific acid phosphatase

ATP:

adenosine triphosphate

DTT:

dithiothreitol

EDTA:

ethylenediaminetetra-acetate

G:

calcium phosphate granules fraction

G6P:

glucose-6-phosphate

G6Pase:

hepatic glucose-6-phosphatase

G6PDH:

glucose-6-phosphate dehydrogenase

K m :

Michaelis-Menten constant

MI:

mitochondria and intermediate postmitochondrial particles

N:

nuclei fraction

NADH:

nicotineamide adenine dinucleotide

P:

microsome fraction

Pi:

inorganic phosphate

PMSF:

phenylmethylsulphonylfluoride

STI:

soybean trypsin inhibitor

βglyP:

Na-β-glycerophosphate

T1,2,3 :

transport protein 1,2,3

TCA:

trichloroacetic acid

References

  • Ashmore J, Weber G (1959) The role of hepatic glucose-6-phosphatase in the regulation of carbohydrate metabolism. Vitam Horm 17:91–132

    Google Scholar 

  • Barrett A (1977) Assay methods. In: Dingle JT (ed) Lysosomes: a laboratory handbook. North-Holland, Amsterdam, pp 110–135

    Google Scholar 

  • Beaufay H, de Duve C (1954) Le système hexose-monophosphatasique. I. Existence d'une glucose-6-phosphatase spécifique. Bull Soc Chim Biol 36:1525–1537

    Google Scholar 

  • Becker GL, Chen CH (1974) Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. J Cell Biol 61:316–326

    Google Scholar 

  • Bedoya FJ, Matschinsky FM, Shimizu T, O'Neil JJ, Appel MC (1986) Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem 261:10760–10764

    Google Scholar 

  • Benedetti A, Fulceri R, Comporti M (1985) Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport. Biochim Biophys Acta 816:267–277

    Google Scholar 

  • Benedetti A, Fulceri R, Comporti M (1986) On a possible role for glucose-6-phosphatase in the regulation of liver cell cytosolic Ca2+ concentration. Trends Biochem Sci 10:284–285

    Google Scholar 

  • Benedetti A, Fulceri R, Romani A, Comporti M (1988) MgATP-dependent glucose-6-phosphatasae stimulated Ca2+ accumulation in liver microsomal fractions. J Biol Chem 263:3466–3473

    Google Scholar 

  • Burchell A, Burchell B (1985) Stabilizing of glucose-6-phosphatase activity by a 21000-dalton hepatic microsomal protein. Biochem J 230:489–495

    Google Scholar 

  • Cori GT, Cori CF (1952) Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem 199:661–667

    Google Scholar 

  • Davidson AL, Arion WJ (1987) Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 253:156–167

    Google Scholar 

  • Dean JM, Vernberg FJ (1965) Effect of the temperature acclimation on some aspects of carbohydrate metabolism in decapod crustacea. Biol Bull 129:87–94

    Google Scholar 

  • Di Pietro DL, Weinhouse S (1960) Hepatic glucokinase in the fed, fasted and alloxan-diabetic rat. J Biol Chem 235:2542–2545

    Google Scholar 

  • Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d'intermue et son application générale aux crustacés. Vie Milieu, Ser A: XVIII:595–610

    Google Scholar 

  • Duve C de, Berthet J, Hers HG, Dupret L (1949) Le système hexose-monophosphatasique. I. Existence d'une glucose-6-phosphatase spécifique. Bull Soc Chim Biol 31:1242–1253

    Google Scholar 

  • Fiske CH, Subbarow J (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    Google Scholar 

  • Florkin M (1960) Blood chemistry. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 141–159

    Google Scholar 

  • Gibson R, Barker PL (1979) The decapod hepatopancreas. Mar Biol Ann Rev 17:285–346

    Google Scholar 

  • Giroix MH, Malaisse-Lagae F, Sener A, Malaisse WJ (1985) Hexose metabolism in pancreatic islets. Galactose transport, phosphorylation and oxydation. Mol Cell Biochem 66:61–64

    Google Scholar 

  • Guary JC, Negrel R (1981) Calcium phosphate granules: a trap for transuranics and iron in crab hepatopancreas. Comp Biochem Physiol 68A:423–427

    Google Scholar 

  • Hers HG, Berthet J, Berthet L, Duve C de (1951) Le système hexose phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol 33:21–41

    Google Scholar 

  • Hohnke L, Scheer BT (1970) Carbohydrate metabolism in crustaceans. In: Florkin M, Scheer BT (eds) Chemical Zoology, vol 5. Academic Press, New York, pp 147–164

    Google Scholar 

  • Iynedjian PB, Pilot PR, Nouspikel T, Milburn JL, Quaade C, Hughes S, Ucla C, Newdard CB (1989) Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci USA 86:7838–7842

    Google Scholar 

  • Jadot M, Colmant C, Wattiaux-De Coninck S, Wattiaux R (1984) Intralysosomal hydrolysis of glycyl-l-phenylalanine 2-naphthylamide. Biochem J 219:965–970

    Google Scholar 

  • Livingstone DR, Clark KR (1983) Seasonal changes in the hexokinase from the mantle tissue of the common mussel Mytilus edulis L. Comp Biochem Physiol 74B:691–702

    Google Scholar 

  • Livingstone DR, Farrar SV (1984) Tissue and subcellular distribution of enzyme activities of mixed-function oxygenase and benzo(a)pyrene metabolism in the common mussel Mytilus edulis L. Sci Total Environ 39:209–235

    Google Scholar 

  • Loret SM, Devos PE (1992) Structure and possible functions of the calcospherite-rich cells (R* cells) in the digestive gland of the shore crab Carcinus maenas. Cell Tissue Res 267:105–111

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–271

    Google Scholar 

  • Lynch MP, Webb KL (1973) Variation in serum constituents of the blue crab Callinectes sapidus: glucose. Comp Biochem Physiol 45A:127–139

    Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ (1988) Hexose metabolism in pancreatic islets: regulation of mitochondrial hexokinase binding. Biochem Med Met Biol 39:80–89

    Google Scholar 

  • Meglasson MD, Burch PT, Berner DK, Najafi H, Matschinsky FM (1986) Identification of glucokinase as alloxan-sensitive glucose sensor of the pancreatic β-cell. Diabetes 35:1163–1173

    Google Scholar 

  • Mithieux G, Vega F, Beylot M, Riou JP (1990) Reappraisal of the effect of Ca2+ on the activity of liver microsomal glucose-6-phosphatase. J Biol Chem 265:7257–7259

    Google Scholar 

  • Niemeyer H, De La Luz Cardenas M, Rabajille E, Ureta T, Clark-Turri L, Penaranda J (1975) Sigmoidal kinetics of glucokinase. Enzyme 20:321–333

    Google Scholar 

  • Nordlie RC, Lygre DG (1966) The inhibition by citrate of inorganic pyrophosphate-glucose phosphotransferase and glucose-6-phosphatase. J Biol Chem 241:3136–3141

    Google Scholar 

  • Parvathy K (1972) Endocrine regulation of carbohydrate metabolism during the moult cycle in crustaceans. I. Effect of eyestalk removal in Ocypode platytarsis. Mar Biol 14:58–62

    Google Scholar 

  • Reyes A, Rabajille E, De La Luz Cardenas M, Niemeyer H (1984) Stability of hexokinase A, B and C and N-acetylglucosamine kinase in liver cells isolated from rat submitted to diabetes and several dietary conditions. Biochem J 221:314–323

    Google Scholar 

  • Schultz LO (1988) Suppression of hepatic glucose-6-phosphatase system in diabetic rats by vanadate. Ann Nutr Metab 32:289–296

    Google Scholar 

  • Sedlmeier D (1987) The role of hepatopancreatic glycogen in the action of the crustacean hyperglycemic hormone (CHH). Comp Biochem Physiol 87A:423–425

    Google Scholar 

  • Sener A, Malaisse-Lagae F, Giroix MH, Malaisse JW (1986) Hexose metabolism in pancreatic islets: compartmentation of hexokinase islets cells. Arch Biochem Biophys 251:61–67

    Google Scholar 

  • Shimizu T, Parker JC, Najafi H, Matchinsky FM (1988) Control of glucose metabolism in pancreatic β-cells by glucokinase, hexokinase and phosphofructokinase. Model study with cell lines derived from β-cells. Diabetes 37:1524–1530

    Google Scholar 

  • Surholt B, Newsholme EA (1981) Maximum activities and properties of glucose-6-phosphatase in muscles from vertebrates and invertebrates. Biochem J 198:621–629

    Google Scholar 

  • Tartakoff AM, Jamieson JD (1974) Subcellular fractionation of the pancreas. In: Fleischer S, Packer L (eds) Methods in Enzymology, vol 31. Academic Press, New York, pp 41–59

    Google Scholar 

  • Tchernigovtzeff C (1965) Multiplication cellulaire et régénération au cours du cycle d'intermue des crustacés décapodes. 2) Carcinus maenas. Arch Zool Exp Gen 106:377–497

    Google Scholar 

  • Trausch G, Forget M-Cl, Devos P, Bauchau A (1988) Phosphorylation of lobster hepatopancreas subcellular fractions by endogenous protein kinases. Comp Biochem Physiol 90B:215–220

    Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Palmero S, Orunescu M (1986) Isolation and biochemical characterization of the digestive gland microsomal fraction from the digestive gland of mussel Mytilus galloprovincialis Lam. Comp Biochem Physiol 83C:439–442

    Google Scholar 

  • Vinuela E, Salas M, Sols A (1963) Glucokinase and hexokinase in liver in relation to glycogen synthesis. J Biol Chem 238:1175–1176

    Google Scholar 

  • Vonk HJ (1960) Digestion and metabolism. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 291–316

    Google Scholar 

  • Waddell ID, Burchell A (1988) The microsomal glucose-6-phosphatase enzyme of pancreatic islets. Biochem J 255:471–476

    Google Scholar 

  • Waddell ID, Gibb L, Burchell A (1990) Calcium activates glucose-6-phosphatase in intact rat hepatic microsomes. Biochem J 267:549–551

    Google Scholar 

  • Walker DG (1963) On the presence of two soluble glucose-phosphorylating enzymes in adult liver and the development of one of these after birth. Biochim Biophys Acta 77:209–226

    Google Scholar 

  • Watford M (1990) Tissue-specific regulation of glucokinase. TIBS 15:1–2

    Google Scholar 

  • Wattiaux R (1971) Centrifugation of subcellular components. Fund Biochem Pharm 8:87–96

    Google Scholar 

  • Weinhouse S (1976) Regulation of glucokinase in liver. Curr Top Cell Regul 11:1–15

    Google Scholar 

  • Weirich GF, Adams JR (1984) Microsomal marker enzymes of Manduca sexta (L) midgut. Arch Int Biochem Phys 1:311–321

    Google Scholar 

  • Wilson JE (1985) Regulation of mammalian hexokinase activity. In: Rivka Beitner (ed) Regulation of carbohydrate metabolism. CRC Press, vol I, pp 45–85

  • Yamaguchi M, Mori S, Suketa Y (1989) Effect of Ca2+ and V5+ on glucose-6-phosphatase activity in rat liver microsomes: the Ca2+ effect is reversed by regucalcin. Chem Pharm Bull Tokyo 37:388–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loret, S.M., Devos, P.E. Hydrolysis of G6P by a microsomal aspecific phosphatase and glucose phosphorylation by a low K m hexokinase in the digestive gland of the crab Carcinus maenas: variations during the moult cycle. J Comp Physiol B 162, 651–657 (1992). https://doi.org/10.1007/BF00296647

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296647

Key words

Navigation