Skip to main content
Log in

The development of resistance to methotrexate in a mouse melanoma cell line

I. Characterisation of the dihydrofolate reductases and chromosomes in sensitive and resistant cells

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10−7 M, to 1×10−4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10−4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht, A.M., Biedler, J.L., Hutchison, D.J.: Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin. Cancer Res. 32, 1539–1546 (1972)

    Google Scholar 

  • Alt, F.W., Kellems, R.E., Schimke, R.T.: Synthesis and degradation of folate reductase in sensitive and methotrexate-resistant lines of S-180 cells. J. biol. Chem. 251, 3063–3074 (1976)

    Google Scholar 

  • Alt, F.W., Kellems, R.E., Bertino, J.R., Schimke, R.T.: Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. biol. Chem. 253, 1357–1370 (1978)

    Google Scholar 

  • Bertino, J.R., Donohue, D.M., Simmons, B., Gabrio, B.W., Silber, R., Huennekens, F.M.: The “induction” of dihydrofolate reductase activity in leukocytes and erythrocytes in patients treated with amethopterin. J. clin. Invest. 42, 466–475 (1963)

    Google Scholar 

  • Biedler, J.L., Spengler, B.A.: Metaphase chromosome anomaly: Association with drug resistance and cell specific products. Science 191, 185–187 (1976a)

    Google Scholar 

  • Biedler, J.L., Spengler, B.A.: Quantitative relationship between a chromosome abnormality (HSR) and antifolate resistance associated with enzyme over-production. J. Cell Biol. 70, 117a (1976b)

  • Biedler, J.L., Albrecht, A.M., Hutchison, D.J.: Cytogenetics of mouse leukemia L1210. I: Association of a specific chromosome with dihydrofolate reductase activity in amethopterin-treated sublines. Cancer Res. 25, 246–257 (1965)

    Google Scholar 

  • Biedler, J.L., Albrecht, A.M., Hutchison, D.J., Spengler, B.A.: Drug response, dihydrofolate reductase, and cytogenetics of amethopterin-resistant Chinese hamster cells in vitro. Cancer Res. 32, 152–161 (1972)

    Google Scholar 

  • Biedler, J.L., Albrecht, A.M., Spengler, B.A.: Non-banding (homogeneous) chromosome regions in cells with very high dihydrofolate reductase levels. Genetics 77, 54–55 (1974)

    Google Scholar 

  • Biedler, J.L., Albrecht, A.M., Spengler, B.A.: Biochemical and karyological properties of cells resistant to the quinazoline antifolate, methasquin. Europ. J. Cancer 14, 41–49 (1978)

    Google Scholar 

  • Blakley, R.L.: The biological reduction of pteridines. In: The biochemistry of folic acid and related pteridines (E.L. Tatum, and A. Neuberger, eds.) pp. 139–187. New York: John Wiley and Sons Inc. 1969

    Google Scholar 

  • Chang, S.E., Littlefield, J.W.: Elevated dihydrofolate reductase messenger RNA levels in methotrexate-resistant BHK cells. Cell 7, 391–396 (1976)

    Google Scholar 

  • Davis, B.J.: Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427 (1964)

    Google Scholar 

  • Deitch, A.D.: Introduction to quantitative cytochemistry (G.L. Wied, ed.) pp. 327–354 New York: Academic Press 1966

    Google Scholar 

  • Fischer, G.A.: Increased levels of folic acid reductase as a mechanism of resistance to amethopterin in leukemic cells. Biochem. Pharmacol. 7, 75–77 (1961)

    Google Scholar 

  • Fischer, G.A.: Defective transport of amethopterin (methotrexate) as a mechanism of resistance to the antimetabolite in L5178Y leukemic cells. Biochem. Pharmacol. 11, 1233–1234 (1962)

    Google Scholar 

  • Flintoff, W.F., Spindler, S.M., Siminovitch, L.: Genetic characterization of methotrexate-resistant Chinese hamster ovary cells. In vitro 12, 749–757 (1976a)

    Google Scholar 

  • Flintoff, W.F., Davidson, W.V., Siminovitch, L.: Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells. Somatic Cell Genet. 2, 245–261 (1976b)

    Google Scholar 

  • Giles, K.W., Myers, A.: An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature (Lond.) 206, 93 (1965)

    Google Scholar 

  • Hakala, M.T., Zakrzewski, S.F., Nichol, C.A.: Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J. biol. Chem. 236, 952–958 (1961)

    Google Scholar 

  • Hänggi, V.J., Littlefield, J.W.: Isolation and characterisation of the multiple forms of dihydrofolate reductase from methotrexate resistant hamster cells. J. biol. Chem. 249, 1390–1397 (1974)

    Google Scholar 

  • Harding, N.G.L., Martelli, M.F., Huennekens, F.M.: Amethopterin-induced changes in the multiple forms of dihydrofolate reductase from L-1210 cells. Arch. Biochem. Biophys. 137, 295–296 (1970)

    Google Scholar 

  • Huennekens, F.M.: Folate and B12 coenzymes. In: Biological oxidations (T.P., Singer, ed.), pp. 439–513. New York: John Wiley and Sons Inc. 1968

    Google Scholar 

  • Huennekens, F.M., Vitols, K.S., Whiteley, J.M., Neef, V.G.: Dihydrofolate reductase. In: Methods in cancer research, Vol. 13 (H. Busch, ed.), pp. 199–225. New York: Academic Press 1976

    Google Scholar 

  • Jackson, R.C., Niethammer, D.: Acquired methotrexate resistance in lymphoblasts resulting from altered kinetic properties of dihydrofolate reductase. Europ. J. Cancer 13, 567–575 (1977)

    Google Scholar 

  • Jarbak, J.R., Bachur, N.R.: A soluble dihydrofolate reductase from human placenta: Purification and properties. Arch. Biochem. Biophys. 142, 417–425 (1971)

    Google Scholar 

  • Jonasson, J., Povey, S., Harris, H.: The analysis of malignancy by cell fusion. VII. Cytogenetic analysis of hybrids between malignant and diploid cells and of tumours derived from them. J. Cell Sci. 24, 217–254 (1977)

    Google Scholar 

  • Kellems, R.E., Alt, F.W., Schimke, R.T.: Regulation of folate reductase synthesis in sensitive and methotrexate-resistant sarcoma S-180 cells. In vitro translation and characterisation of folate reductase mRNA. J. biol. Chem. 251, 6987–6993 (1976)

    Google Scholar 

  • Laemmli, V.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227: 680–685 (1970)

    Google Scholar 

  • Latt, S.A.: Microfluorometric detection of DNA synthesis in human chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)

    Google Scholar 

  • Littlefield, J.W.: Hybridization of hamster cells with high and low folate reductase activity. Proc. nat. Acad. Sci. (Wash.) 62, 88–95 (1969)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Nakamura, H., Littlefield, J.W.: Purification, properties, and synthesis of dihydrofolate reductase from wild type and methotrexate-resistant hamster cells. J. biol. Chem. 247, 179–187 (1972)

    Google Scholar 

  • Nixon, P.F., Blakley, R.L.: Dihydrofolate reductase of Streptococcus faecium. II. Purification and some properties of two dihydrofolate reductases from the amethopterin-resistant mutant Streptococcus faecium var durans strain A. J. biol. Chem. 243, 4722–4731 (1968)

    Google Scholar 

  • Nunberg, J.H., Kaufman, R.J., Schimke, R.T., Urlaub, G., Chasin, L.A.: Amplified dihydrofolate reductase genes are localised to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. nat. Acad. Sci. (Wash.) 75, 5553–5556 (1978)

    Google Scholar 

  • Osborn, M.J., Huennekens, F.M.: Enzymatic reduction of dihydrofolic acid. J. biol. Chem. 233, 969–974 (1958)

    Google Scholar 

  • Ryser, HJ.-P., Shen, W.-P.: Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proc. nat. Acad. Sci. (Wash.) 75, 3867–3870 (1978)

    Google Scholar 

  • Schimke, R.T., Alt, F.W., Kellems, R.E., Kaufman, R.J., Bertino, J.R.: Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spr. Harb. Symp. quant. Biol. 42, 649–657 (1978a)

    Google Scholar 

  • Schimke, R.T., Kaufmann, R.J., Alt, F.W., Kellems, R.F.: Gene amplification and drug resistance in cultured murine cells. Science 202, 1051–1055 (1978b)

    Google Scholar 

  • Seabright, M.: The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma (Berl.) 36, 204–210 (1972)

    Google Scholar 

  • Sirotnak, F.M., Kurita, S., Hutchison, D.J.: On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Res. 28, 75–80 (1968)

    Google Scholar 

  • Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bostock, C.J., Clark, E.M., Harding, N.G.L. et al. The development of resistance to methotrexate in a mouse melanoma cell line. Chromosoma 74, 153–177 (1979). https://doi.org/10.1007/BF00292270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292270

Keywords

Navigation