Skip to main content

Advertisement

Log in

Very low frequency Ocean Bottom ambient seismic noise and coupling on the shallow continental shelf

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Sources of very low frequency (0.01 to 1.0 Hz) ambient seismic noise in the shallow (<100 m) water continental margin sediments are investigated using Ocean Bottom Seismometers (OBS). The predominant seismic motions are found to be due to surface gravity (water) waves and water-sediment interface waves. Actual experimental measurements of seabed acceleration and hydrodynamic pressure are given, including side by side comparisons between buried and plate-mounted OBS units. OBS-sediment resonant effects are found to be negligible at the low frequencies under investigation. Wherever there exists relative motion between the seabed and the water, however, an exposed OBS is subject to ‘added mass’ forces that cause it to move with the water rather than the sediments. Calculations based on measured seabed motions show that a neutral density, buried seismometer has superior sediment coupling charactersitics to any exposed OBS design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AkiK. and RichardsP., 1980, Quantitative Seismology: Theory and Methods Vol. 1, W. H. Freeman, San Francisco.

    Google Scholar 

  • Badiey, M., 1988, Acoustic Normal Mode Propagation in Stratified Ocean Overlaying Inhomogeneous Anisotropic Sediment Bed, PhD dissertation, Univ. of Miami.

  • BendatJ. S. and PiersolA. G., 1971, Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York.

    Google Scholar 

  • BrocherT. and IwatakeB., 1982, Sources of Low-Frequency Ambient Sea-floor Noise on a Continental Shelf, Bull. Seism. Soc. Am. 72, 1129–1142.

    Google Scholar 

  • BrocherT., 1983, T-Phases from an Earthquake Swarm on the Mid-Atlantic Ridge at 31.6°N, Mar. Geophys. Res. 6(1), 39–49.

    Google Scholar 

  • CagniardL., 1962, Reflection and Refraction of Progressive Seismic Waves, McGraw-Hill, New York.

    Google Scholar 

  • CrandallG., LuyendykB., ReichleM., and ProtheroW., 1983, A Marine Seismic Refraction study of the Santa Barbara Channel, California, Mar. Geophys. Res. 6(1), 15–38.

    Google Scholar 

  • DuennebierF., BlackintonG., and SuttonG. H., 1981, Current Generated Noise Recorded on Ocean Bottom Seismometers, Mar. Geophys. Res. 5(1), 109–115.

    Google Scholar 

  • DuschenesJ., BarashT., MattaboniP., and SolomanC., 1981, On the use of an Externally Deployed Geophone Package on an Ocean Bottom Seismometer, Mar. Geophys. Res. 4(4), 437–450.

    Google Scholar 

  • Essen, H.-H., 1980, Model Computations for Low Velocity Surface Waves on Marine Sediments, in W. Kuperman and F. Jensen, (eds), Bottom Interacting Ocean Acoustics, NATO Conference Series, IV, 299–305.

  • Goodman, D., Yamamoto, T., Turgut, A., Trevorrow, M., and Badiey, M., 1989, Directional Spectral Characteristics of Microseisms Using a Shallow Water OBS Array, submitted to J. Acoust. Soc. Am.

  • HarrisD., CessaroR., DuennebierF., and ByrneD., 1988, A Permanent Seismic Station Beneath the Ocean Bottom, Mar. Geophys. 9(1), 67–94.

    Google Scholar 

  • HaskellN., 1953, The Dispersion of Surface Waves on Multilayered Media, Bull. Seism. Soc. Am. 43, 17–34.

    Google Scholar 

  • HyndmanR. and RogersG., 1981, Seismicity Surveys with Ocean Bottom Seismographs off Western Canada, J. Geophys. Res. 86(B5), 3867–3880.

    Google Scholar 

  • KrohnC., 1984, Geophone Ground Coupling, Geophysics 49, 722–731.

    Google Scholar 

  • LathamG. and SuttonG., 1966, Seismic Measurements on the Ocean Floor, J. Geophys. Res. 71, 2545–2573.

    Google Scholar 

  • LathamG. and NowrooziA., 1968, Waves, Weather, and Ocean Bottom Microseisms, J. Geophys. Res. 73, 3945–3956.

    Google Scholar 

  • LewisB. and TuthillJ., 1981, Instrumental Waveform Distortion on Ocean Bottom Seismometers, Mar. Geophys. Res. 5(1), 79–85.

    Google Scholar 

  • Longuet-HigginsM., 1950, A Theory of the origin of Microseisms, Phil. Trans. Roy. Soc. London. A243, 1–35.

    Google Scholar 

  • Rauch, D., 1980, Experimental and Theoretical of Seismic Interface Waves in Coastal Waters, in W. Kuperman and F. Jensen, (eds), Bottom Interacting Ocean Acoustics, NATO Conference Series, IV, 307–327.

  • RodgersP., 1986, The Response of the Horizontal Pendulum Seismometer to Rayleigh and Love Waves, Tilt, and Free Oscillations of the Earth, Bull. Seis, Soc. Am. 58(5), 1384–1406.

    Google Scholar 

  • Schirmer, F., 1980, Experimental Determination of Properties of the Scholte Wave in the Bottom of the North Sea, in W. Kuperman and F. Jensen, (eds), Bottom Interacting Ocean Acoustics, NATO Conference Series, IV, 285–298.

  • Schmalfeldt, B. and Rauch, D., 1980, Ambient and Ship-induced Low-frequency Noise in Shallow Water, in W. Kuperman and F. Jensen, (eds), Bottom Interacting Ocean Acoustics, NATO Conference Series, IV, 329–343.

  • SleathJ., 1984, Sea Bed Mechanics, Wiley-Interscience, New York.

    Google Scholar 

  • SuttonG. H., DuennebierF., IwatakeB., TuthillJ., LewisB., and EwingJ., 1981a, An Overview and General Results of the Lopex Island OBS Experiment, Mar. Geophys. Res. 5(1), 1–34.

    Google Scholar 

  • SuttonG. H., DuennebierF., and IwatakeB., 1981b, Coupling of Ocean Bottom Seismometers to Soft Bottom, Mar. Geophys. Res. 5(1), 35–51.

    Google Scholar 

  • SuttonG. H. and DuennebierF., 1988, Optimum Design of Ocean Bottom Seismometers, Mar. Geophys. Res. 9(1), 45–65.

    Google Scholar 

  • TrehuA. and SolomanS., 1981, Coupling Parameters of the MIT OBS at two Nearshore Sites, Mar. Geophys. Res. 5(1), 79–85.

    Google Scholar 

  • TrehuA., 1985, Coupling of Ocean Bottom Seismometers to Sediment: Results of Tests with the U.S. Geological Survey Ocean Bottom Seismometer, Bull. Seism. Soc. Am. 75, 271–289.

    Google Scholar 

  • Trevorrow, M., Badiey, M., Turgut, A., Conner, C., and Yamamoto, T., 1987, A Quantitative Analysis of Seabed Shear Modulus Inversions from Experiments on the New Jersey Shelf in August, 1986, RSMAS Report 87-003, Univ. of Miami.

  • TrevorrowM., YamamotoT., BadieyM., TurgutA., and ConnerC., 1988a, Experimental Verification of Seabed Shear Modulus Profile Inversions Using Surface Gravity (water) Wave-induced Seabed Motion, Geophysical Journal, 93(3), 419–436.

    Google Scholar 

  • Trevorrow, M., Yamamoto, T., Turgut, A., Abbott, C., Badiey, M., Goodman, D., and Ando, K., 1988b, High Resolution Bottom Shear Modulus Profiler Experiments on the New Jersey Shelf, Summer 1987, RSMAS Technical Report 88-002, Univ. of Miami.

  • TrittonD., 1977, Physical Fluid Dynamics, van Nostrand Reinhold, Wokingham, England.

    Google Scholar 

  • Turgut, A., Yamamoto, T., Abbott, C., Badiey, M., Trevorrow, M., and Goodman, D., 1987, High Resolution Bottom Shear Modulus Profiler: A Shallow Water Real-Time OBS Array, RSMAS Technical Report 87-007, Univ. of Miami.

  • Turgut, A., Yamamoto, T., Trevorrow, M., Badiey, M., and Conner, C., 1988, Bottom Shear Modulus Profiler: A Real-time Remote Sensing Instrument, submitted to A.S.M.E. Transactions.

  • WashburnH. and WileyH., 1941, The Effect of the Placement of a Seismometer on its Response Charactersitics, Geophysics 8, 119–131.

    Google Scholar 

  • WolfA., 1944, The Equation of Motion of a Geophone on the Surface of an Elastic Earth, Geophysics 9, 29–35.

    Google Scholar 

  • WrightJ. and YamamotoT., 1979, Wave Forces on Horizontal Cylinders, J. Waterway, Port, Coastal, and Ocean Div., ASCE 105 (WW1), 1–13.

    Google Scholar 

  • YamamotoT., NathJ., and SlottaL., 1974, Wave Forces on Cylinders Near Plane Boundary, J. Waterways, Harbors, and Coastal Eng. Div., ASCE 100 (WW4), 345–359.

    Google Scholar 

  • YamamotoT. 1976, Hydrodynamic Forces on Multiple Circular Cylinders, J. Hydraulics Div., ASCE 102(HY9), 1193–1210.

    Google Scholar 

  • YamamotoT., 1983, Numerical Integration Method for Seabed Response to Water Waves, Soil Dynam. and Earthquake Engineering 2(2), 92–100.

    Google Scholar 

  • YamamotoT. and TakahashiS., 1985, Wave Damping by Soil Motion, J. Waterways, Port, Coastal, and Ocean Eng., ASCE 111(1), 62–77.

    Google Scholar 

  • YamamotoT. and ToriiT., 1986, Seabed Shear Modulus Profile Inversions Using Surface Gravity (water) Wave-induced Bottom Motion, Geophys. J. Roy. Astr. Soc. 85, 413–431.

    Google Scholar 

  • Yamamoto, T., Trevorrow, M., Badiey, M., and Turgut, A., 1989, Seabed Porosity and Shear Modulus Inversions Using Surface Gravity (water) Wave-induced Seabed Motion, Geophysical Journal (in press).

  • ZelikovitzS. and ProtheroW., 1981, The Vertical Response of an Ocean Bottom Seismometer: Analysis of the Lopez Island Vertical Transient Tests, Mar. Geophys. Res. 5(1), 53–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevorrow, M.V., Yamamoto, T., Turgut, A. et al. Very low frequency Ocean Bottom ambient seismic noise and coupling on the shallow continental shelf. Mar Geophys Res 11, 129–152 (1989). https://doi.org/10.1007/BF00285664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285664

Key words