Skip to main content
Log in

Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The aim of this retrospective study was to assess the contribution of thallium-201 single-photon emission tomography (SPET) in the detection and differential diagnosis of brain tumours. In 90 patients 201Tl SPET was performed because of clinical or radiological suspicion of tumoral invasion, completed by technetium-99m hexamethylpropylene amine oxime and 99mTc-sestamibi SPET in some patients. For all tumours, diagnosis was based on biopsy or autopsy. Other diagnoses were made only after clinical and radiological follow-up for at least 6 months. Histologically tumours consisted of astrocytoma stage I or II (number of patients, n=6), astrocytoma stage III (n=8), glioblastoma multiforme (n=14) and oligodendroglioma (n=3), brain metastasis (n=14), lymphoma (n=3), meningioma (n=3), pituitary adenoma (n=2), pineal tumour (n=1), colloid cyst (n=1) and craniopharyngioma (n=1). False-negative studies included pineal tumour (n=1), colloid cyst (n=1), craniopharyngioma (n=1), astrocytomas stage I or II (n=6) and stage III (n=3), oligodendroglioma (n=2) and metastasis in the brain stem (n=1). Additional metastases approximately < 1.5 cm were not detected in two patients and 201Tl SPET underestimated tumoral extent in one patient suffering from glioblastoma multiforme (n=1). A false-positive study was obtained in a patient with skull metastasis (n=l). All 15 patients who were finally shown to suffer from ischaemic infarction had a normal SPET study 9–28 days after the onset of symptomatology. Of five patients with haemorrhagic infarction, studied within 2 weeks, four were false-positive. Of six patients with intracranial haemorrhage, studied 9–39 days later, one showed focal 201Tl accumulation. Two further false-positive studies consisted of angioma and epidural haematoma. Finally, SPET studies were normal in six patients with definite diagnosis of (reactive) gliosis (n=3), Binswanger's encephalopathy (n=1), postinfectious encephalopathy (n=1) and multiple sclerosis (n=1). In the patient population presented, sensitivity of 201Tl SPET for supratentorial brain tumours was 71.7% and specificity was 80.9%. Clinical information and control SPET studies in combination with early, 30-min and 3- to 4-h delayed imaging may be expected to improve on these figures. On the other hand it seems that, in addition to tumoral histology, the presence of tumours in the fossa posterior and small volumes contribute to the occurrence of falsenegative 201Tl SPET studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alavi A, Hirsch LJ. Studies of central nervous system disorders with single photon emission computed tomography and positron emission tomography: evolution over the past 2 decades. Semin Nucl Med 1991;21: 58–81.

    Google Scholar 

  2. Biersack HJ, Grunwald F, Reichmann K, Hotze AL, Durwen HF, Broich K, Jen Shih W. Functional brain imaging with single photon emission computed tomography using Tc-99m labeled HMPAO. In: Freeman LM, ed. Nuclear medicine annual. New York: Raven Press; 1990: 59–94.

    Google Scholar 

  3. Ell PJ, Costa DC. The role of nuclear medicine in neurology and psychiatry. Curr Opin Neurol Psychiatry 1992;5: 863–869.

    Google Scholar 

  4. Brooks DJ, Beaney RP, Thomas DG. The role of positron emission tomography in the study of cerebral tumors. Semin Oncol 1986;13: 83–93.

    Google Scholar 

  5. Coleman RE, Hoffman JM, Hanson MW, Sostman D, Schold SC. Clinical application of PET for the evaluation of brain tumors. J Nucl Med 1991;32: 616–622.

    Google Scholar 

  6. Biersack HJ, Grunwald F, Kropp J. Single photon emission computed tomography imaging of brain tumors. Semin Nucl Med 1991;21: 2–10.

    Google Scholar 

  7. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Picket RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA, Chaplin SB. Technetium-99m d,l-HM-PAO. A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987;28: 191–202.

    Google Scholar 

  8. Reba RC, Holman BL. Brain perfusion radiotracers. In: Diksic M, Reba RC, eds. Radiopharmaceuticals and brain pathology studied with PET and SPECT. Boston: CRC Press; 1991: 35–39.

    Google Scholar 

  9. Lequin MH, Blok D, Pauwels EKJ. Radiopharmaceuticals for functional brain imaging with SPECT. In: Freeman LM, ed. Nuclear medicine annual. New York: Raven Press; 1991: 37–65.

    Google Scholar 

  10. Roy CS, Sherrington CS. On the regulation of the blood supply of the brain. J Physiol 1890;11: 85–108.

    Google Scholar 

  11. Lou HC, Edvinsson L, MacKenzie ET. The concept of coupling blood flow to brain function: revision required? Ann Neurol 1987;22: 289–297.

    Google Scholar 

  12. Kuschinsky W. Coupling between functional activity, metabolism and blood flow in the brain. Microcirculation 1982;2: 357–378.

    Google Scholar 

  13. Cleto EM, Holmes RA, Singh A, Bierman R, Islam S, Hoffman TJ. Radiographic and neuro-SPECT imaging in an immature third ventricle teratoma: case report. J Nucl Med 1992;38: 1371–1374.

    Google Scholar 

  14. Winchell HS, Horst WD, Braun WH, Oldendorf WH, Hattner R, Parker H. N-Isopropyl-(1123)p-iodoamphetamine: single-pass brain uptake and wash-out; binding to brain synaptosomes and localization in dog and monkey brain. J Nucl Med 1980;21: 947–952.

    Google Scholar 

  15. Suess E, Malessa S, Ungersböck K, Kitz P, Podreka I, Heimberger K, Hornykiewicz O, Deecke L. Technetium-99m-d,l-hexamethylpropyleneamine oxime (HMPAO) uptake and gluthatione content in brain tumors. J Nucl Med 1991;32: 1675–1681.

    Google Scholar 

  16. Elgazzar AH, Fernandez-Ulloa M, Silberstein EB. Thallium-201 as a tumour-localizing agent: current status and future considerations. Nucl Med Commun 1993;14: 96–103.

    Google Scholar 

  17. Waxman AD. Thallium-201 in nuclear oncology. In: Freeman LM, ed. Nuclear medicine annual. New York: Raven Press; 1991: 193–209.

    Google Scholar 

  18. Black KL, Hawkins RA, Tim KT, Becker DP, Lerner C, Marciano D. Use of Thallium-201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 1989;71: 342–346.

    Google Scholar 

  19. Oriuchi N, Tamura M, Shibazaki T, et al. Evaluation of thallium-201 SPECT in patients with glioma: a comparative study with histological diagnosis, clinical feature and proliferative activity [English abstract]. Kaku-Igaku 1991;28: 1263–1271.

    Google Scholar 

  20. Burkard R, Kaiser KP, Wieler H, Klawki P, Linkamp A, Mittelbach L, Goller T. Contribution of Thallium-201 SPECT to the grading of tumorous alterations of the brain. Neurosurg Rev 1992;15: 265–273.

    Google Scholar 

  21. Sjöholm H, Brun A, Elmqvist D, Rehncrona S, Rosen I, Salford L. Thallium-201 and SPECT distinguishes high-grade from low-grade gliomas (abstract). J Nucl Med 1992;33: 868.

    Google Scholar 

  22. Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 1987;28: 47–52.

    Google Scholar 

  23. Sehweil AM, KcKillop JH, Milroy R, Wilson R, Abdel-Dayem HM, Omar YT. Mechanism of thallium-201 uptake in tumours. Eur J Nucl Med 1989;15: 376–379.

    Google Scholar 

  24. Caluser C, Macapinlac H, Healey J, Ghavimi F, Meyers P, Wollner N, Kalaigian J, Kostakoglu L, Abdel-Daem HM, Yeh SD, Larson SM. The relationship between thallium uptake, blood flow and blood pool activity in bone and soft tissue tumors. Clin Nucl Med 1992;17: 565–571.

    Google Scholar 

  25. Ancri D, Basset J-Y, Longehampt MF, Etavard C. Diagnosis of cerebral lesions by thallium-201. Radiology 1978;128: 417–422.

    Google Scholar 

  26. Yoshii Y, Satou M, Yamamoto T, Yamada Y, Hyodo A, Hyodo A, Nose T, Ishikawa H, Hatakeyama R. The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 1993;20: 39–45.

    Google Scholar 

  27. Mountz JM, Stafford-Schuck K, McKeever P, Taren J, Beierwaltes WH. Thallium-201 tumor/cardiac ratio estimation of residual astrocytoma. J Neurosurg 1988;68: 705–709.

    Google Scholar 

  28. O'Tuama LA, Packard AB, Treves ST. SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylisonitrile) technetium (1). J Nucl Med 1990;31: 2040–2041.

    Google Scholar 

  29. ZüLch KJ. Histological typing of tumors of the central nervous system. World Health Organization, Geneva (International histological classification of tumors). No 2, 1979.

  30. Sehweil A, KcKillop JH, Ziada G, Al-Sayed M, Abdel-Dayem H, Omar YT. The optimum time for tumour imaging with thallium-201. Eur J Nucl Med 1988;13: 527–529.

    Google Scholar 

  31. Ueda T, Kaji J, Wakisaka S, Watanabe K, Hoshi H, Jinnouchi S, Futami S. Time sequential single photon emission computed tomography studies in brain tumour using thallium-201. Eur J Nucl Med 1993;20: 138–145.

    Google Scholar 

  32. Chamberlain MC, Murovic JA, Levin VA. Absence of contrast enhancement on CT brain scans with supratentorial malignant gliomas. Neurology 1988;38: 1371–1374.

    Google Scholar 

  33. Valavanis A, Friede R, Schubiger O, Hayek J. Cerebral granulomatous angiitis simulating brain tumour. J Comput Assist Tomogr 1979;3: 536–538.

    Google Scholar 

  34. Davis KR, Taveras JM, New PJ, Schnur JA, Roberson GH. Cerebral infarction diagnosed by computerized tomography: analysis and evaluation of findings. Am J Roentgenol 1975;124: 643–660.

    Google Scholar 

  35. Scott M. Spontaneous intracerebral hematoma caused by cerebral neoplasms. Report of eight verified cases. J Neurosurg 1975;42: 338–342.

    Google Scholar 

  36. Gruber ML, Hochberg FH. Editorial: systematic evaluation of primary brain tumors. J Nucl Med 1990;31: 669–670.

    Google Scholar 

  37. Barzen G, Schubert C, Richter W, Calder D, Barwald M, Eichstadt H, Felix R. Brain scintigraphy (SPECT) with thallium-201 in primary brain tumors. Strahlenther Onkol 1992;168: 732–737.

    Google Scholar 

  38. Kosuda S, Aoki S, Suzuki K, Nakamura H, Nakamura O, Shidara N. Primary malignant lymphoma of the central nervous system by Ga-67 and Thallium-201 brain SPECT. Clin Nucl Med 1992;17: 961–964.

    Google Scholar 

  39. Burger PC, Heinz ER, Shibata T, Kleihaus P. Topograhic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 1988;68: 698–704.

    Google Scholar 

  40. Tsuchiya K, Furui S, Suda Y, Takanashi H, Takenaka E, Chigasaki H. Single photon emission computed tomography of brain tumors with 201TIC1. Acta Radiol Suppl (Stockh) 1986; 369: 419–421.

    Google Scholar 

  41. Macapinlac HA, Scott A, Caluser C, Finlay J, DeLaPaz R, Lindsley K, Mohannadi A, Macalintal S, Kalagian H, Yeh S, Larson S, Abdel-Dayem H. Comparison of thallium-201 and Tc-99m methoxy isobutylisontrile (MIBI) with MRI in the evaluation of recurrent brain tumours [abstract]. J Nucl Med 1992;33: 867.

    Google Scholar 

  42. Kim KT, Black KL, Marciano D, Mazziotta JC, Guze BH, Grafton S, Hawkins RA, Becker DP. Thallium-201 SPECT imaging of brain tumors: methods and results. J Nucl Med 1990;31: 965–969.

    Google Scholar 

  43. Piwnica-Worms D, Holman BL. Editorial: noncardiac applications of hexakis-(alkylisonitrile) technetium-99m complexes. J Nucl Med 1990;31: 1166–1167.

    Google Scholar 

  44. Aktolun C, Bayhan H, Kir M. Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with thallium-201. Clin Nucl Med 1991;17: 171–176.

    Google Scholar 

  45. Campeau RJ, Kronemer KA, Sutherland CM. Concordant uptake of Tc-99m sestaMIBI and thallium-201 in unsuspected breast tumor. Clin Nucl Med 1992;17: 936–937.

    Google Scholar 

  46. Dierckx RA, Dobbeleir A, Franken P, De Deyn PP, Vandevivere J. Thallium-201 and Tc-99m MIBI brain SPECT: preliminary findings [abstract]. Eur J Nucl Med 1991;18: 678.

    Google Scholar 

  47. Bordlee RP, Ware RW. Thallium-201 accumulation by epidermoid inclusion cyst. J Nucl Med 1992;33: 1857–1858.

    Google Scholar 

  48. Krasnow AZ, Collier BD, Isitman AT, Hellman RS, Peck DC. The clinical significance of unusual sites of thallium-201 uptake. Semin Mucl Med 1988;18: 350–358.

    Google Scholar 

  49. Ando A, Ando I, Katayama M, et al. Biodistribution of thallium-201 in tumour bearing animals and in inflammatory lesions induced animals. Eur J Nucl Med 1987:12: 567–572.

    Google Scholar 

  50. Tonami N, Matsuda H, Ooba H, Yokoyama K, Hisada K, Ikeda K, Yamashita J. Thallium-201 accumulation in cerebral candidiasis: unexpected finding on SPECT. Clin Nucl Med 1990;15: 397–400.

    Google Scholar 

  51. Krishna L, Slizofski WJ, Katsetos CD, Nair S, Dadparvar S, Brown SJ, Chevres A, Roman R. Abnormal intracerebral thallium localization in a bacterial brain abscess. J Nucl Med 1992;33: 2017–2019.

    Google Scholar 

  52. Palestro CJ, Swyer AJ, Kim CK, Muzinic M, Goldsmith SJ. Role of In-111 labelled leukocyte scintigraphy in the diagnosis of intracerebral lesions. Clin Nucl Med 1991;16: 305–308.

    Google Scholar 

  53. Schmidt KG, Rasmussen JW, Frederiksen PB, Kock-Jensen C, Pedersen NT. Indium-111-granulocyte scintigraphy in brain abscess diagnosis: limitations and pitfalls. J Nucl Med 1990;31: 1121–1127.

    Google Scholar 

  54. Langen K-J, Herzog H, Rota E, Roosen N, Wieler H, Kiwit J, Kuwert T, Storch-Becker A, Feinendegen L. Tomographic studies of rCBF with Tc-99m HMPAO SPECT in comparison with PET in patients with primary brain tumors. Neurosurg Rev 1987;10: 23–24.

    Google Scholar 

  55. Babich JW, Keeling F, Flower MA, Repetto L, Whitton A, Fielding S, Fullbrook A, Ott RJ, McGready VR. Initial experience with Tc-99m HMPAO in the study of brain tumors. Eur J Nucl Med 1988;14: 39–44.

    Google Scholar 

  56. Langen K-J, Roosen N, Herzog H, Kuwert T, Kiwit JCW, Bock WJ, Feinendegen LE. Investigation of brain tumors with Tc-99m HMPAO SPECT. Nucl Med Commun 1989;10: 325–334.

    Google Scholar 

  57. Lindegaard MW, Skretting A, Hager B, Watne K, Lindegaard K-F. Cerebral and cerebellar uptake of Tc-99m-(d,l)-hexamethyl-propyleneamine oxime (HMPAO) in patients with brain tumor studied by single photon emission computerized tomography. Eur J Nucl Med 1986;12: 417–420.

    Google Scholar 

  58. O'Tuama LA, Janicek MJ, Barnes PD, Scott RM, Black P, Sallan SE, Tarbell NJ, Kupsky WJ, Wagenaar D, Ulanski JS, Trees ST. Thallium-201/Tc-99m HMPAO SPECT imaging of treated childhood brain tumors. Pediatr Neurol 1991;7: 249–257.

    Google Scholar 

  59. Zhang JJ, Park CH, Kim SM, Ayyangar KM, Haghbin M. Dual isotope SPECT in the evaluation of recurrent brain tumor. Clin Nucl Med 1992;17: 663–664.

    Google Scholar 

  60. Schwarz RB, Carvalho PA, Alexander E III, Loeffler JS, Folkerth R, Holman BL. Radiation necrosis versus high-grade recurrent gliomas: differentiation by using dual-isotope SPECT with thallium-201 and Tc-99m HMPAO. Am J Neuroradiol 1991;12: 1187–1192.

    Google Scholar 

  61. Carvalho PA, Schwartz RB, Alexander E III, Garada BM, Zimmerman RE, Loeffler JS, Holman BL. Detection of recurrent gliomas with quantitative thallium-201/technetium-99m HMPAO single-photon emission computerized tomography. J Neurosurg 1992;77: 565–570.

    Google Scholar 

  62. Rubertone JA, Woo DV, Emrich JG, Brady LW. Brain uptake of thallium-201 from the cerebrospinal fluid compartment. J Nucl Med 1993;34: 99–103.

    Google Scholar 

  63. Hoh CK, Khanna S, Harris GC, Chen TT, Black KL, Becker DP, Maddahi J, Mazziotta JC, Marciano DM, Hawkins RA. Evaluation of brain tumor recurrence with thallium-201 SPECT studies: correlation with FDG-PET and histological results [abstract]. J Nucl Med 1992;33: 867.

    Google Scholar 

  64. Macapinlac H, Finlay J, Caluser C, Yeh S. Comparison of thallium-201 SPECT and F-18 FDG PET imaging with MRI (Ge-DTPA) and evaluation of recurrent supra- and infratentorial brain tumours [abstract]. J Nucl Med 1992;33: 867.

    Google Scholar 

  65. Borggreve F, Dierckx RA, Crols R, Matthijs R, Appel B, Vandevivere J, Marten P, Martin JJ, De Deyn PP. Repeat thallium-201 SPECT in cerebral lymphoma. Funct Neuro 1993;8: 95–101.

    Google Scholar 

  66. Ramanna L, Waxman AD, Binney G, Waxman MB, Brachman DE, Tanasescu DE, Tourje JE, Pressman BD. Increasing specificity of brain scintigraphy using thallium-201 [abstract]. J Nucl Med 1987;28: 658.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dierckx, R.A., Martin, J.J., Dobbeleir, A. et al. Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 21, 621–633 (1994). https://doi.org/10.1007/BF00285584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285584

Key words

Navigation