Skip to main content
Log in

Asymptotic behavior of some stochastic difference equation population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a general class of Markov population models formulated as stochastic difference equations. The population density is shown to converge either to 0, to +∞, or to a unique stationary distribution concentrated on (0, +∞), depending on the signs of the mean log growth rates near 0 and +∞. These results are applied to the Watkinson-MacDonald “bottleneck” model of annual plants with a seedbank, extended to allow for random environmental fluctuations and competition among co-occurring species. We obtain criteria for long-term persistence of single-species populations, and for coexistence of two competing species, and the biological significance of the criteria is discussed. The lamentably few applications to the problem at hand of classical limit-theory for Markov chains are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo L. M. F.: On Horn's Markovian model of forest dynamics with particular reference to tropical forests. Theoret. Pop. Biol. 19, 230–250 (1981)

    Google Scholar 

  • Angevine, M. W., Chabot, B. F.: Seed germination syndromes in higher plants. In: Solbrig, O. T., Jain, S., Johnson, G. B. and Raven, P. L., Topics in Plant Population Biology. New York: Columbia University Press, 1979

    Google Scholar 

  • Bartlett, M. S.: Stochastic population models in ecology and epidemiology. London: Methuen, 1960

    Google Scholar 

  • Beatley, J. C.: Phenological events and their environmental triggers in Mojave desert ecosystems. Ecology 55, 856–863 (1974)

    Google Scholar 

  • Bierzychudek, P.: Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol. 90, 757–776 (1982)

    Google Scholar 

  • Chesson, P. L.: Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9, 323–347 (1978)

    Google Scholar 

  • Chesson, P. L.: The stabilizing effect of a random environment. J. Math. Biology 15, 1–36 (1982)

    Google Scholar 

  • Chesson, P. L.: Coexistence of competitors in a stochastic environment: the storage effect, pp. 188–198. In: Freedman, H. I., Strobeck, C., eds. Population Biology (Lecture Notes in Biomathematics 52). Berlin-Heidelberg-New York: Springer 1983

    Google Scholar 

  • Chesson, P. L., Warner, R. R.: Environmental variability promotes coexistence in lottery competitive systems. Amer. Natur. 117, 923–943 (1981)

    Google Scholar 

  • Cohn, H.: On the convergence of stochastically monotone sequences of random variables and some applications. J. Appl. Prob. 18, 592–605 (1981)

    Google Scholar 

  • Comins, H. N., Hamilton, W. D., May, R. M.: Evolutionary stable dispersal strategies. J. Theoret. Biol. 32, 205–230 (1980)

    Google Scholar 

  • Derrienec, Y., Lin, M.: On invariant measures and ergodic theorems for positive operators. J. Funct. Anal. 13, 252–267 (1973)

    Google Scholar 

  • Ellner, S.: Evolutionarily stable germination behaviors in randomly varying environments. Ph.D. thesis, Cornell University, Ithaca, N.Y. 1982

    Google Scholar 

  • Evenari, M., Shanan, L., Tadmor, N.: The Negev: The Challenge of a Desert. Cambridge, Mass: Harvard University Press, 1971

    Google Scholar 

  • Fagerström, T., Ågren, G. I.: Theory for coexistence of species differing in regeneration properties. Oikos 33, 1–10 (1979)

    Google Scholar 

  • Flåm, S. D.: Steady states in population models with monotone, stochastic dynamics. J. Math. Biology 13, 87–93 (1981)

    Google Scholar 

  • Foguel, S. R.: Existence of a σ-finite invariant measure for a Markov process on a locally compact space. Israel J. Math. 6, 1–5 (1968)

    Google Scholar 

  • Foguel, S. R.: The ergodic theory of Markov processes. New York: Van Nostrand Reinhold, 1969

    Google Scholar 

  • Foguel, S. R.: The ergodic theory of positive operators on continuous functions. Ann. Scuola. Norm. Sup. Pisa 27, 19–51 (1973)

    Google Scholar 

  • Fowler, N. L., Antonivics, J.: Small-scale variability in the demography of transplants of two herbaceous species. Ecology 62, 1450–1457 (1981)

    Google Scholar 

  • Gillespie, J.: Polymorphism in random environments. Theoret. Pop. Biol. 4, 193–195 (1973)

    Google Scholar 

  • Grubb, P. J.: The maintenance of species richness in plant communities. The importance of the regeneration niche. Biol. Rev. 52, 104–145 (1977)

    Google Scholar 

  • Hamilton, W. D.: May, R. M.: Dispersal in stable habitats. Nature 269, 578–581 (1977)

    Google Scholar 

  • Harper, J. L.: Population Biology of Plants. New York: Academic Press 1977

    Google Scholar 

  • Hartl, D. L., Cook, R. D.: Balanced polymorphism of quasineutral alleles. Theoret. Pop. Biol. 4, 163–172 (1973)

    Google Scholar 

  • Heckel, D. G., Roughgarden, J.: A species near its equilibrium size in a fluctuating environment can evolve a lower intrinsic rate of increase. Proc. Natl. Acad. Sci. USA, 77, 7497–7500 (1980)

    Google Scholar 

  • Hubbell, S. P.: Seed predation and the coexistence of tree species in tropical forests. Oikos 38, 214–229 (1980)

    Google Scholar 

  • Huston, M.: A general hypothesis of species diversity. Amer. Natur. 113, 81–101 (1979)

    Google Scholar 

  • Hutchinson, G. E.: The paradox of the plankton. Amer. Natur. 95, 137–145 (1961)

    Google Scholar 

  • Hutchinson, G. E. An introduction to population ecology. New Haven: Yale University Press, 1978

    Google Scholar 

  • Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: case of large population size. Theoret. Pop. Biol. 6, 355–382 (1974)

    Google Scholar 

  • Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: One-locus two-allele model. J. Math. Biol. 2, 1–17 (1975)

    Google Scholar 

  • Koller, D.: The survival value of germination-regulating mechanisms in the field. Herbage Abstr. 34, 1–7 (1964)

    Google Scholar 

  • Laslett, G. M., Pollard, D. B., Tweedie, R. I.: Techniques for establishing ergodic and recurrence properties of continuous-valued Markov chains. Naval Res. Logist. Quart. 25, 455–472 (1978)

    Google Scholar 

  • Levin, S. A.: Dispersion and population interactions. Amer. Natur. 114, 103–114 (1974)

    Google Scholar 

  • Levin, S. A.: Mechanisms for the generation and maintenance of diversity in ecological communities. In: (M. S. Bartlett and R. W. Hiorns, eds.) The Mathematical Theory of the Dynamics of Biological Populations, 2. New York: Academic Press, 1981

    Google Scholar 

  • Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theoret. Pop. Biol. (1984, in press)

  • Lewontin, R. C., Cohen, D.: On population growth in a random environment. Proc. Natl. Acad. Sci. USA 62, 1056–1060 (1969)

    Google Scholar 

  • Loeve, M.: Probability theory. 4th edition. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  • MacDonald, N., Watkinson, A. R.: Models of an annual plant population with a seedbank. J. Theor. Biol. 93, 643–653 (1981)

    Google Scholar 

  • Mack, R. N., Harper, J. L.: Interference in dune annuals: spatial pattern and neighborhood effects. J. Ecology 65, 345–363 (1977)

    Google Scholar 

  • Motro, U.: Optimal rates of dispersal. I. Haploid populations. II. Diploid populations. Theoret. Pop. Biol. 21, 394–411, 412–429 (1982)

    Google Scholar 

  • Neveu, J.: Existence of bounded invariant measures in ergodic theory. In: LeCam, L., Neyman, J., (eds). Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, v. II, part 2. University of California Press, Berkeley 1967

    Google Scholar 

  • Norman, M. F.: Markov processes and learning models. New York: Academic Press 1972

    Google Scholar 

  • Norman, M. F.: An ergodic theorem for evolution in a random environment. J. Appl. Probability 12, 661–672 (1975)

    Google Scholar 

  • Noy-Meir, I.: Desert ecosystems: environment and producers. Ann. Rev. Ecol. Syst. 4, 25–41 (1973)

    Google Scholar 

  • Orey, S.: Limit theorems for Markov chain transition probabilities. New York: Van Nostrand Reinhold 1971

    Google Scholar 

  • Pickett, S. T. A.: Non-equilibrium coexistence of plants. Bull. Torrey Bot. Club 107, 238–248 (1980)

    Google Scholar 

  • Pomerantz, M. J., Thomas, W. R., Gilpin, M. E.: Asymmetries in population growth regulated by intraspecific competition: empirical studies and model tests. Oecologia 47, 311–322 (1980)

    Google Scholar 

  • Revuz, D.: Markov chains. Amsterdam: North-Holland Publishing Company (1975)

    Google Scholar 

  • Rosenblatt, M.: Markov processes: Structure and asymptotic behavior. New York: Springer 1971

    Google Scholar 

  • Rosenblatt, M.: Recurrent points and transition functions acting on continuous functions. Z. Wahrscheinlichkeitstheorie verw. Geb. 30, 173–183 (1974)

    Google Scholar 

  • Sawyer, S., Slatkin, M.: Density independent fluctuations of population size. Theoret. Pop. Biol. 19, 37–51 (1981)

    Google Scholar 

  • Shmida, A., Ellner, S. P.: Coexistence of plant species with similar niches. Vegetatio (1984, in press)

  • Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)

    Google Scholar 

  • Thompson, K., Grime, J. P.: Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecology 67, 893–921 (1979)

    Google Scholar 

  • Tuominen, P., Tweedie, R. L.: Markov chains with continuous components. Proc. London Math. Soc. 38, 89–114 (1979)

    Google Scholar 

  • Turelli, M.: A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theoret. Pop. Biol. 13, 244–267 (1978)

    Google Scholar 

  • Turelli, M.: Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theoret. Pop. Biol. 20, 1–56 (1981)

    Google Scholar 

  • Turelli, M., Petry, D.: Density-dependent selection in a random environment: An evolutionary process that can maintain stable population dynamics. Proc. Natl. Acad. Sci. USA. 77, 7501–7505 (1980)

    Google Scholar 

  • Turkington, R., Harper, J.L.: The growth, distribution and neighborhood relationships of Trifolium repens in a permanent pasture. I. Ordination, pattern, and contact. IV. Fine-scale biotic differentiation. J. Ecology 67, 201–218, 245–254 (1979)

    Google Scholar 

  • Tweedie, R. L.: Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stoch. Proc. Appl. 3, 385–403 (1975)

    Google Scholar 

  • Tweedie, R. L.: Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737–771 (1976)

    Google Scholar 

  • Watkinson, A. R.: Density-dependence in single-species populations of plants. J. Theor. Biol. 82, 345–357 (1980)

    Google Scholar 

  • Weiner, J.: A neighborhood model of annual-plant interference. Ecology 63, 1237–1241 (1982)

    Google Scholar 

  • White, P. S.: Pattern, process, and natural disturturbance in vegetation. Botanical Rev. 45, 229–299 (1979)

    Google Scholar 

  • Yahav, J. A.: On a fixed point theorem and its stochastic equivalent. J. Appl. Prob. 12, 605–611 (1975)

    Google Scholar 

  • Yahav, J. A.: On a Markov process generated by non-decreasing concave functions. Stoch. Proc. Appl. 4, 41–54 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellner, S. Asymptotic behavior of some stochastic difference equation population models. J. Math. Biology 19, 169–200 (1984). https://doi.org/10.1007/BF00277745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277745

Key words

Navigation