Skip to main content
Log in

Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Hysteresis, oscillations, and pattern formation in realistic biochemical systems governed by P.D.E.s are considered from both numerical and mathematical points of view. Analysis of multiple steady states in the case of hysteresis, and bifurcation theory in the cases of oscillations and pattern formation, account for the observed numerical results. The possibility to realize these systems experimentally is their main interest, thus bringing further arguments in favor of theories explaining basic biological phenomena by diffusion and reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betz, A., Chance, B.: Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys., 109, 579–594 (1965)

    Google Scholar 

  • Boa, J. A.: A model biochemical reaction. Ph.D. Thesis, California Institute of Technology, Pasadena, 1974

    Google Scholar 

  • Boa, J. A., Cohen, D. S.: Bifurcation of localized disturbances in a model biochemical reaction. SIAM J. Appl. Math. 30, 123–135 (1976)

    Google Scholar 

  • Changeux, J. P., Thiery, J.: Regulatory Function of Biological Membranes (J. Järnefelt ed.) Vol. 11, Elsevier Publishing Co., 1968

  • Gmitro, J. I., Scriven, L. E.: A physicochemical basis for pattern and rhythm, in: Intracellular transport (K. B. Warren, ed.) New York: Academic Press, 1966

    Google Scholar 

  • Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972)

    Google Scholar 

  • Hess, B.: Funkionelle und Morphologische Organisation der Zelle. Berlin, Springer Verlag, 1962

    Google Scholar 

  • Higgins, J.: A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Nat. Acad. Sci., U.S.A. 51, 989–994 (1964)

    Google Scholar 

  • Iooss, G.: Bifurcation et stabilité, Publications Mathématiques, N∘ 31, Université Paris Sud, Orsay, France, 1973

    Google Scholar 

  • Katchalsky, A., Oplatka, A.: Neurosciences Res. Symp. 1, 352–371 (1966)

    Google Scholar 

  • Katchalsky, A., Spangler, R.: Quarterly Rev. Biophys. 1, 127–175 (1968)

    Google Scholar 

  • Kauffman, S. A., Shymko, R. M., Trabert, K.: Control of sequential compartment formation in Drosophila. Science 199, 259–270 (1978)

    Google Scholar 

  • Kogelman, S., Keller, J. B.: Transient behavior of unstable nonlinear systems with applications to the Bénard and Taylor problems. SIAM J. Appl. Math. 20, 619–637 (1971)

    Google Scholar 

  • Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Applied Math. Sciences, Vol. 19, New York-Heidelberg-Berlin: Springer Verlag, 1976

    Google Scholar 

  • Matkowsky, B. J.: A simple nonlinear dynamic stability problem. Bull. Amer. Math. Soc. 76, 620–625 (1970)

    Google Scholar 

  • Meinhardt, H.: J. Cell Sci. 23, 117–139 (1977)

    Google Scholar 

  • Meurant, G., Saut, J. C.: Bifurcation and stability in a chemical system. J. Math. An. and Appl. 59, 69–91 (1977)

    Google Scholar 

  • Naparstek, A., Romette, J. L., Kernevez, J. P., Thomas, D.: Memory in enzyme membranes. Nature 249, 490–491 (1974)

    Google Scholar 

  • Naparstek, A., Thomas, D., Caplan, S. R.: Biochem. Biophys. Acta 323, 643–646 (1973)

    Google Scholar 

  • Nicolis, G., Prigogine, I.: Self-organization in non equilibrium systems. Interscience, New York, 1977

    Google Scholar 

  • Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. Journal, July (1972)

  • Sel'kov, G. E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968)

    Google Scholar 

  • Thomas, D.: Artificial membranes: transport, memory, and oscillatory phenomena. In: Analysis and Control of Immobilized Enzyme Systems (Thomas and Kernevez eds.), pp. 115–150, North Holland, 1976

  • Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (London) B237, 37–72 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kernevez, J.P., Joly, G., Duban, M.C. et al. Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems. J. Math. Biology 7, 41–56 (1979). https://doi.org/10.1007/BF00276413

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276413

Key words

Navigation