Skip to main content
Log in

A renewal equation with a birth-death process as a model for parasitic infections

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model is derived for the description of parasitic diseases on host populations with age structure. The parasite population develops according to a linear birth-death-process. The parasites influence mortality and fertility of the hosts and are acquired with a rate depending on the mean parasite load of the host population. The model consists of a system of partial differential equations with initial and boundary conditions. From the boundary condition a renewal equation for the host population is derived. The model is then generalized to describe a multitype process. Existence and uniqueness of solutions are proved. Results concerning persistent solutions are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, R. M., May, R. M.: Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978)

    Google Scholar 

  2. Bailey, N. T. J.: The elements of stochastic processes, 3 edn. New York: Wiley 1967

    Google Scholar 

  3. Bailey, N. T. J.: Mathematical theory of infectious diseases, 2nd edn. London: Griffin 1975

    Google Scholar 

  4. Bellman, R., Cooke, K. L.: Differential-difference equations. New York: Academic Press 1963

    Google Scholar 

  5. Cohen, J. E.: Mathematical models of schistosomiasis. Ann. Rev. Ecol. Syst. 8, 209–233 (1977)

    Google Scholar 

  6. Feller, W.: On the integral equation of renewal theory. Ann. Math. Statist. 12, 243–267 (1941)

    Google Scholar 

  7. Goffmann, W., Warren, K. S.: An application of the Kermack-McKendrick theory to the epidemiology of schistosomiasis. Am. J. Trop. Med. Hyg. 19, 278–283 (1970)

    Google Scholar 

  8. Hadeler, K. P.: Integral equations for infections with discrete parasites: Hosts with Lotka birth law (1982). In: Levin, S. A., Hallam, T. G. (eds.) Mathematical ecology (Lect. Notes Biomath., vol. 54, pp. 356–365) Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  9. Hadeler, K. P., Dietz, K.: Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Comput. Math. Appl. 9, 415–430 (1983)

    Google Scholar 

  10. Hadeler, K. P., Dietz, K.: Population dynamics of killing parasites which reproduce in the host. J. Math. Biol. 21, 45–65 (1984)

    Google Scholar 

  11. Hairston, N. G.: On the mathematical analysis of schistosome populations. Bull. WHO 33, 45–62 (1965)

    Google Scholar 

  12. Hairston, N. G.: An analysis of age-prevalence data by catalytic models. Bull. WHO 33, 163–175 (1965)

    Google Scholar 

  13. Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Ser. A 115, 700–721 (1927)

    Google Scholar 

  14. Kostitzin, V. A.: Symbiose, parasitisme et évolution (1934) In: Scudo, F., Ziegler, J. (eds.) The golden age of theoretical ecology (Lect. Notes Biomath., vol. 22, pp. 369–408) Berlin Heidelberg New York: Springer 1978

    Google Scholar 

  15. Kretzschmar, M.: Eine Erneuerungsgleichung mit einem Geburt-Tod-Prozess zur Beschreibung von Parasitosen. Dissertation, Universität Tübingen 1987

  16. Lewis, T.: A model for the parasitic disease bilharziasis. Adv. Appl. Probab. 7, 673–704 (1975)

    Google Scholar 

  17. Linhart, H.: On some bilharzia infection and immunization models. S. Afr. Statist. J. 2, 61–66 (1968)

    Google Scholar 

  18. Lotka, A. J.: Relation between birth rates and death rates. Science N. S. 26, 21–22 (1907)

    Google Scholar 

  19. Macdonald, G.: The dynamics of helminth infections with special reference to schistosomes. Trans. Roy. Soc. Trop. Med. Hyg. 59, 489–506 (1965)

    Google Scholar 

  20. May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions. II. Destabilizing processes. J. Anim. Ecol. 47, 249–267 (1978)

    Google Scholar 

  21. May, R. M., Anderson, R. M.: Population biology of infectious diseases, part II. Nature 280, 455–461 (1979)

    Google Scholar 

  22. McKendrick, A. G.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)

    Google Scholar 

  23. Nåsell, I.: Hybrid models of tropical infections (Lect. Notes Biomath., vol. 59) Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  24. Sharpe, F. R., Lotka, A. J.: A problem in age-distribution. Philos. Mag. Ser. 6, 21, 435–438 (1911)

    Google Scholar 

  25. Von Foerster, H.: Some remarks on changing populations. In: The kinetics of cellular proliferation 382–407. New York: Grune and Stratton 1959

    Google Scholar 

  26. Webb, G. F.: Theory of nonlinear age-dependent population dynamics. New York: Dekker 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzschmar, M. A renewal equation with a birth-death process as a model for parasitic infections. J. Math. Biology 27, 191–221 (1989). https://doi.org/10.1007/BF00276103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276103

Key words

Navigation