Skip to main content
Log in

Expression of thednaA gene ofEscherichia coli is inducible by DNA damage

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The DnaA protein is the key DNA initiation protein inEscherichia coli. Using transcriptional and translational fusions, comparative Sl nuclease mapping and immunoblot analysis, the regulation ofdnaA in relation to inducible responses to DNA damage was studied. We found that DNA damage caused by mitomycin C (MC) and methyl methanesulfonate (MMS) led to a significant induction of thednaA gene. These results strongly suggest that in response to DNA damage which inhibits DNA replication, an increased initiation capacity is induced atoriC and that, in addition to the known autorepression, a new regulatory mechanism may be involved in the control ofdnaA gene expression. Furthermore, this mechanism might be indirectly related to the SOS regulon, becauselexA andrecA mutants, which block the induction of the SOS response, preventdnaA induction by MMS and MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T, Mizuuchi K, Menzel R, Gellert M (1984) DNA sequence and transcription of the region upstream of theE. coli gyrB gene. Nucleic Acids Res 12:6389–6395

    PubMed  CAS  Google Scholar 

  • Armengod M, Lambies E (1986) Overlapping arrangement of therecF anddnaN operons ofE. coli. Gene 43:183–196

    Article  PubMed  CAS  Google Scholar 

  • Armengod M, Garcia M, Lambies E (1988) Transcriptional organization of thednaN andrecF genes ofE. coli. J Biol Chem 263:12109–12114

    PubMed  CAS  Google Scholar 

  • Atlung T, Clausen E, Hansen F (1985) Autoregulation of thednaA gene ofE. coli. Mol Gen Genet 200:442–450

    Article  PubMed  CAS  Google Scholar 

  • Atlung T, Loebner-Olesen A, Hansen F (1987) Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication inE. coli. Mol Gen Genet 206:51–59

    Article  PubMed  CAS  Google Scholar 

  • Bagg A, Kenyon C, Walker G (1981) Inducibility of a gene product required for UV and chemical mutagenesis inE. coli. Proc Natl Acad Sci USA 78:5749–5753

    Article  PubMed  CAS  Google Scholar 

  • Billen D (1969) Replication of the bacterial chromosome: Location of new initiation sites after irradiation. J Bacteriol 97:1169–1175

    PubMed  CAS  Google Scholar 

  • Blanar M, Sandler S, Armengod M, Clark A (1984) Molecular analysis of therecF gene ofE. coli. Proc Natl Acad Sci USA 81:4622–4626

    Article  PubMed  CAS  Google Scholar 

  • Boiteux S, Huisman O, Lavel J (1984) 3-Methyladenine residues in DNA induce the SOS functionsfiA inE. coli. EMBO J 3:2569–2573

    PubMed  CAS  Google Scholar 

  • Bramhill D, Kornberg A (1988) A model for initiation at origins of replication. Cell 54:915–918

    Article  PubMed  CAS  Google Scholar 

  • Braun R, O'Day K, Wright A (1985) Autoregulation of the DNA replication genednaA inE. coli. Cell 40:159–169

    Article  PubMed  CAS  Google Scholar 

  • Braun R, Wright A (1986) DNA methylation differentially enhances the expression of one of the twoE. coli dnaA promoters in vivo and in vitro. Mol Gen Genet 202:246–250

    Article  PubMed  CAS  Google Scholar 

  • Burgers P, Kornberg A, Sakakibara Y (1981) ThednaN gene codes for the β subunit of DNA polymerase III holoenzyme ofE. coli. Proc Natl Acad Sci USA 78:5391–5395

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty T, Yoshinaga K, Lother H, Messer W (1982) Purification of thednaA gene product. EMBO J 1:1545–1549

    PubMed  CAS  Google Scholar 

  • Chiaramello A, Zyskind J (1989) Expression of thednaA andmioC genes as a function of growth rate. J Bacteriol 171:4272–4280

    PubMed  CAS  Google Scholar 

  • Clark A, Volkert M, Margossian L (1979) A role forrecF in repair of UV damage of DNA. Cold Spring Harbor Symp Quant Biol 43:887–892

    PubMed  CAS  Google Scholar 

  • Doudney C (1973) Rifampicin limitation of DNA synthesis in UV damaged bacteria. Biochem Biophys Acta 312:243–247

    PubMed  CAS  Google Scholar 

  • Fuller R, Kornberg A (1983) PurifieddnaA protein in initiation of replication at theE. coli chromosomal origin of replication. Proc Natl Acad Sci USA 80:5817–5821

    Article  PubMed  CAS  Google Scholar 

  • Fuller R, Kaguni J, Kornberg A (1981) Enzymatic replication of the origin of theE. coli chromosome. Proc Natl Acad Sci USA 78:7370–7374

    Article  PubMed  CAS  Google Scholar 

  • Fuller R, Funnell B, Kornberg A (1984) ThednaA protein complex with theE. coli chromosomal origin and other sites. Cell 38:889–900

    Article  PubMed  CAS  Google Scholar 

  • Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910

    Article  PubMed  CAS  Google Scholar 

  • Gielow A, Kücherer C, Kölling R, Messer W (1988) Transcription in the region of replication origin ofE. coli. Termination ofasnC transcripts. Mol Gen Genet 214:474–481

    Article  PubMed  CAS  Google Scholar 

  • Hansen E, Hansen F, von Meyenburg K (1982) The nucleotide sequence of thednaA gene and the first part of thednaN gene ofE. coli. Nucleic Acids Res 10:7373–7385

    PubMed  CAS  Google Scholar 

  • Hirota Y, Ryter A, Jacob F (1968) Thermosensitive mutants ofE. coli in the process of DNA synthesis and cellular division. Cold Spring Harbor Symp Quant Biol 33:677–693

    PubMed  CAS  Google Scholar 

  • Iyer V, Szybalski W (1963) A molecular mechanism of mitomycin action: linking of complementary DNA strands. Proc Natl Acad Sci USA 50:335–362

    Article  Google Scholar 

  • Jeggo P (1979) Isolation and characterization ofE. coli mutants unable to induce the adaptive response to simple alkylating agents. J Bacteriol 139:783–791

    PubMed  CAS  Google Scholar 

  • Jeggo P, Defais M, Samson L, Schendel P (1977) An adaptive response ofE. coli to low levels of alkylating agents: comparison with previously characterised DNA repair pathways. Mol Gen Genet 157:1–9

    Article  PubMed  CAS  Google Scholar 

  • Jonczyk P, Hines R, Smith D (1989) TheE. coli dam gene is expressed as a distal gene of a new operon. Mol Gen Genet 217:86–96

    Article  Google Scholar 

  • Kaasch M, Kaasch J, Quiñones A (1989) Expression of thednaN anddnaQ genes ofE. coli is inducible by mitomycin C. Mol Gen Genet 219:187–192

    Article  PubMed  CAS  Google Scholar 

  • Kaguni J, Kornberg A (1984) Replication initiated at the origin (oriC) of theE. coli chromosome reconstituted with purified enzymes. Cell 38:183–190

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Walker G (1980) DNA-damaging agents stimulate gene expression at specific loci inE. coli. Proc Natl Acad Sci USA 77:2819–2923

    Article  PubMed  CAS  Google Scholar 

  • Khidhir M, Casaregola S, Holland B (1985) Mechanism of transient inhibition of DNA synthesis in UV-irradiatedE. coli: Inhibition is independent ofrecA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet 199:133–140

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1988) DNA replication. J Biol Chem 263:1–4

    PubMed  CAS  Google Scholar 

  • Kücherer C, Lother H, Schauzu M, Messer W (1986) Regulation of transcription of the chromosomaldnaA gene ofE. coli. Mol Gen Genet 205:115–121

    Article  PubMed  Google Scholar 

  • Lemotte P, Walker G (1985) Induction and autoregulation ofada, a positively acting element regulating the response ofE. coli to methylating agents. J Bacteriol 161:888–895

    PubMed  CAS  Google Scholar 

  • Lindahl T, Sedgwick B (1988) Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57:133–157

    Article  PubMed  CAS  Google Scholar 

  • Loebner-Olesen A, Skarstad K, Jansen F, von Meyenburg K, Boye E (1989) The DnaA protein determines the initiation mass ofE. coli. Cell 57:881–889

    Article  CAS  Google Scholar 

  • Lother H, Kölling R, Kücherer C, Schauzu M (1985) Initiation of replication inE. coli involvesdnaA protein regulated transcription within the replication origin. EMBO J 4:555–560

    PubMed  CAS  Google Scholar 

  • Masters M, Paterson T, Popplewell A, Owen T, Pringle J, Begg K (1989) Effect of DnaA protein levels and the rate of initiation atoriC on transcription originating in theftsQ andftsA genes: In vivo experiments. Mol Gen Genet 216:475–483

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch E, Sambrock J (1982) Molecular cloning — A laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • McKenney K, Shimatake H, Court D, Schmeissner U, Brady C, Rosenberg M (1981) A system to study promoter and terminator signals recognized byE. coli RNA polymerase. In: Chirikjain I, Papas T (eds) Gene amplification and analysis, vol 2. Elsevier North-Holland; New York, pp 383–415

    Google Scholar 

  • Messer W, Seufert W, Schaefer C, Gielow A, Hartmann H, Wende M (1988) Functions of the DnaA protein ofE. coli in replication and transcription. Biochem Biophys Acta 951:351–358

    PubMed  CAS  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Minton N (1984) Improved plasmid vectors for isolation of translationallac gene fusions. Gene 31:269–273

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Sekiguchi M (1986) Regulatory mechanisms for induction of synthesis of repair enzymes in response to alkylating agents: Ada protein as a transcriptional regulator. Proc Natl Acad Sci USA 83:6297–6301

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H, Kimura M, Nagata T, Sakakibara Y (1984) Structural analysis of thednaA anddnaN genes ofE. coli. Gene 28:159–170

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Nakabeppu Y, Sekiguchi M (1985) Ability of various alkylating agents to induce adaptive and SOS responses: A study withlacZ fusions. Mutat Res 146:149–154

    PubMed  CAS  Google Scholar 

  • Pierucci O, Helmstetter C, Rickert M, Weinberger M, Leonard A (1987) Overexpression of thednaA gene inE. coli B/r: Chromosome and minichromosome replication in the presence of rifampicin. J Bacteriol 169:1871–1877

    PubMed  CAS  Google Scholar 

  • Quilliardet P, Hofnung M (1985) The SOS chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res 147:65–78

    Google Scholar 

  • Quiñones A, Messer W (1988) Discoordinate gene expression in thednaA-dnaN operon ofE. coli. Mol Gen Genet 213:118–124

    Article  PubMed  Google Scholar 

  • Quiñones A, Kücherer C, Piechocki R, Messer W (1987) Reduced transcription of thernh gene inE. coli mutants expressing the SOS regulon constitutively. Mol Gen Genet 206:95–100

    Article  PubMed  Google Scholar 

  • Quiñones A, Kaasch J, Kaasch M, Messer W (1989) Induction ofdnaN anddnaQ gene expression inE. coli by alkylation damage to DNA. EMBO J 8:587–593

    PubMed  Google Scholar 

  • Rokeach L, Chiaramello A, Junker D, Crain K, Nouram A, Jannatipour M, Zyskind J (1986) Effects of DnaA protein on replication and transcription events at theE. coli origin of replication. UCLA Symp Mol Cell Biol 47:415–417

    Google Scholar 

  • Sakakibara Y, Yuasa S (1982) Continuous synthesis of thednaA gene product ofE. coli in the cell cycle. Mol Gen Genet 186: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara Y, Tsukano H, Sako T (1981) Organization and transcription of thednaA anddnaN genes ofE. coli. Gene 13:47–55

    Article  PubMed  CAS  Google Scholar 

  • Samson L, Cairns J (1977) A new pathway for DNA repair inE. coli. Nature 267:281–283

    Article  PubMed  CAS  Google Scholar 

  • Schaefer C, Messer W (1988) Termination of theE. coli asnC transcript. The DnaA protein/dnaA box complex blocks transcribing RNA polymerase. Gene 73:347–354

    Article  PubMed  CAS  Google Scholar 

  • Sekimizu K, Bramhill D, Kornberg A (1988a) Sequential early stages in the in vitro initiation of replication at the origin of theE. coli chromosome. J Biol Chem 263:7124–7130

    PubMed  CAS  Google Scholar 

  • Sekimizu K, Yung B, Kornberg A (1988 b) The DnaA protein ofE. coli. Abundance, improved purification and membrane binding. J Biol Chem 263:7136–7140

    PubMed  CAS  Google Scholar 

  • Singer B, Kusmierek T (1982) Chemical mutagenesis. Annu Rev Biochem 51:655–693

    Article  PubMed  CAS  Google Scholar 

  • Skarstad K, Loebner-Olesen A, Atlung T, von Meyenburg K, Boye E (1989) Initiation of DNA replication inE. coli after overproduction of the DnaA protein. Mol Gen Genet 218:50–56

    Article  PubMed  CAS  Google Scholar 

  • Teo I, Sedgwick B, Kilpatrik M, McCarthy T, Lindahl T (1986) The intracellular signal for induction of resistance to alkylating agents inE. coli. Cell 45:315–324

    Article  PubMed  CAS  Google Scholar 

  • Tomasz M, Chawla A, Lipman R (1988) Mechanism of monofunctional and bifunctional alkylation of DNA by mitomycin C. Biochemistry 27:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Moffat K, Egan B (1989) UV irradiation inhibits initiation of DNA replication fromoriC inE. coli. Mol Gen Genet 216:446–454

    Article  PubMed  CAS  Google Scholar 

  • von Meyenburg K, Hansen F (1987) Regulation of chromosome replication. In: Naidherd F, Ingraham J, Low K, Magasamik B, Schaechter M, Umbager H (eds)Escherichia coli andSalmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington DC, pp 1555–1577

    Google Scholar 

  • von Meyenburg K, Hansen F, Riise E, Bergmans H, Meijer M, Messer W (1979) Origin of replication,oriC, of theE. coli chromosome: Genetic mapping and minichromosome replication. Cold Spring Harbor Symp Quant Biol 43:121–128

    Google Scholar 

  • Walker G (1984) Mutagenesis and inducible responses to DNA damage inE. coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Wang Q, Kaguni J (1989) DnaA protein regulates transcription of therpoH gene ofE. coli. J Biol Chem 264:7338–7344

    PubMed  CAS  Google Scholar 

  • Witkin E (1976) UV mutagenesis and inducible DNA repair inE. coli. Bacteriol Rev 40:869–907

    PubMed  CAS  Google Scholar 

  • Witkin E, Kogoma T (1984) Involvement of the activated form of RecA protein in SOS mutagenesis and stable replication inE. coli. Proc Natl Acad Sci USA 81:7539–7543

    Article  PubMed  CAS  Google Scholar 

  • Witkin E, Roegner-Maniscalco V, Sweasy J, McCall O (1987) Recovery from UV induced inhibition of DNA synthesis requires umuDC gene products inrecA718 mutant strains but not inrecA + strains ofE. coli. Proc Natl Acad Sci USA 84:6805–6809

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Bremer H (1988) Chromosome replication inE. coli induced by oversupply of DnaA. Mol Gen Genet 211:138–142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiñones, A., Jüterbock, WR. & Messer, W. Expression of thednaA gene ofEscherichia coli is inducible by DNA damage. Molec. Gen. Genet. 227, 9–16 (1991). https://doi.org/10.1007/BF00260699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260699

Key words

Navigation