Skip to main content
Log in

The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The regional thickness distributions of the subchondral plate and the unmineralized part of the articular cartilage were morphometrically determined in normal human patellae, and the correlation coefficient for each specimen calculated from the paired measurements. For this purpose the patellae were embedded in methyl methacrylate and cut as serial sections, which were assessed with a Vidas image-analyzing system (Kontron). The values obtained were used to reconstruct the individual and average thickness distributions and to calculate the correlation coefficients for each subject. Both the thickness of the subchondral plate and that of the cartilage revealed regular distributions which, however, followed different patterns. Central regions with maximum values from which the thickness decreased concentrically towards the periphery were found in both. However, the distribution patterns of the unmineralized cartilage and the subchondral plate could be clearly distinguished, both by the position of the maxima and by the arrangement of the isocrassids (contour lines of equal thickness). The thicknesses of the two tissues showed a correlation between 0.38 and 0.82 (mean 0.6). We attribute this to their different reactions to the type of stress acting upon them. It appears that the thickness of the subchondral plate is principally determined by stresses acting over a longer period of time with low frequency, whereas the thickness of the articular cartilage seems to be a response to intermittent dynamic stresses of a higher frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed A, Burke D, Yu A (1983) In vitro measurement of static pressure distribution in synovial joints. II. Retropatellar surface. J Biomech Eng 105:226–236

    Google Scholar 

  • Bayliss MT, Venn M, Maroudas A, Ali SY (1983) Structure of proteoglycans from different layers of human articular cartilage. Biochem J 209:387–400

    Google Scholar 

  • Beaupre GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling — theoretical development. J Orthop Res 8:651–661

    Google Scholar 

  • Burck H (1969) Histologische Technik. Thieme, Stuttgart

    Google Scholar 

  • Burkhard R (1966) Präparative Voraussetzungen zur klinischen Histologie des menschlichen Knochenmarks. 1. Methodische Untersuchung zur Acrylateinbettung größerer, lipidreicher Gewebsproben. Blut 13:337–357

    Google Scholar 

  • Carter DR (1984) Mechanical loading histories and cortical bone remodelling. Calcif Tissue Int 36:19–24

    Google Scholar 

  • Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Müller-Gerbl M, Putz R (1992) Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat 180:425–433

    Google Scholar 

  • Eckstein F, Putz R, Müller-Gerbl M, Steinlechner M, Benedetto K (1993) Cartilage degeneration in the human patella and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis? Surg Radiol Anat 15:279–286

    Google Scholar 

  • Ficat C, Maroudas A (1975) Cartilage of the patella. Ann Rheum Dis 34:515–519

    Google Scholar 

  • Fick R (1990) Handbuch der Anatomie und Mechanik der Gelenke, vol 2. Fischer, Jena

    Google Scholar 

  • Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4:304–317

    CAS  PubMed  Google Scholar 

  • Goldstein SA, Coale E, Weiss APC, Grossnickle M, Meller B, Matthews LS (1986) Patellar surface strain. J Orthop Res 4:372–377

    Google Scholar 

  • Gray ML, Pizzanelli AM, Grodzinsky Aj, Lee RC (1988) Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res 6:777–792

    Google Scholar 

  • Hall AC, Urban JPG, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9:1–10

    Google Scholar 

  • Hefzy MS, Yang H (1993) A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics. J Biomed Eng 15:289–302

    Google Scholar 

  • Hehne H-J (1983) Das Patellofemoralgelenk. Enke, Stuttgart

    Google Scholar 

  • Hehne H-J (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop 258:73–85

    Google Scholar 

  • Hille E, Schulitz KP, Henrichs C, Schneider T (1985) Pressure and contact-surface measurements within the femoropatellar joint and their variations following lateral release. Arch Orthop Trauma Surg 104:275–282

    Google Scholar 

  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biochem 20:1135–1150

    Google Scholar 

  • Kummer B (1962) Funktioneller Bau und funktionelle Anpassung des Knochens. Anat Anzl 10:261–293

    Google Scholar 

  • Kurrat HJ, Oberländer W (1978) The thickness of the cartilage in the hip joint. J Anat 126:145–155

    Google Scholar 

  • Kurrat HJ, Oberländer W (1981) Die Knorpeldickenverteilung im proximalen Anteil des menschlichen Ellenbogengelenks. Morphol Med 1:15–24

    Google Scholar 

  • Laczko J, Levai G (1975) A simple differential staining method for semi-thin sections of ossifying cartilage and bone tissues embedded in epoxy resin. Mikroskopie 31:1–4

    Google Scholar 

  • Lanyon LE (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53 Suppl 1:S102-S107

    PubMed  Google Scholar 

  • Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biochem 17:897–905

    Google Scholar 

  • Marar BC, Orth MC, Pillay VK (1975) Chondromalacia of the patella in Chinese. J Bone Joint Surg [Am] 57A:342–345

    Google Scholar 

  • Marder R, Swanson T, Sharkey N, Duwelius P (1993) Effects of partial patellectomy and reattachment of the patellar tendon on patellofemoral contact areas and pressures. J Bone Joint Surg [Am] 75:35–45

    Google Scholar 

  • Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S (1992) A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone 13:363–368

    Google Scholar 

  • Meachim G (1971) Effect of age on the thickness of adult articular cartilage at the shoulder joint. Ann Rheum Dis 30:43–46

    Google Scholar 

  • Meachim G, Bently G, Baker R (1977) Effect of age on thickness of adult patellar articular cartilage. Ann Rheum Dis 36:563–568

    Google Scholar 

  • Milz S, Putz R (1994) Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 185:103–110

    Google Scholar 

  • Müller-Gerbl M, Schulte E, Putz R (1987) The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat 154:103–111

    Google Scholar 

  • Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of longterm mechanical adaptation in individual joints. Skeletal Radiol 18:507–512

    Google Scholar 

  • Müller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 7[Suppl 2]:S411-S418

    Google Scholar 

  • Oberländer W (1973) Die Beanspruchung des menschlichen Hüftgelenks. V. Die Verteilung der Knochendichte im Acetabulum. Z Anat Entwicklungsgesch 140:367–384

    Google Scholar 

  • Oberländer W (1977) Die Beanspruchung des menschlichen Hüftgelenks. VII. Die Verteilung der Knorpeldicke im Acetabulum und ihre funktionelle Deutung. Anat Embryol 150:141–153

    Google Scholar 

  • Palumbo C, Palazzini S, Marotti G (1990) Morphological study of intercellular junctions during osteocyte differentiation. Bone 11:401–406

    Google Scholar 

  • Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465

    Google Scholar 

  • Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pedley RB, Meachim G (1979) Topographical variation in patellar subarticular calcified tissue density. J Anat 128:737–745

    Google Scholar 

  • Putz R, Müller-Gerbl M, Schulte E, Wimmer B (1987) Verteilung der Knorpeldicke und der Mineralisierung im Kniegelenk. In: Refior HJ, Hackenbroch MH, Wirth CJ (eds) Der alloplastische Ersatz des Kniegelenkes. Thieme, Stuttgart

    Google Scholar 

  • Rodan GA (1992) Introduction to bone biology. Bone 13:S3-S6

    Google Scholar 

  • Romeis B (1980) Mikroskopische Technik. Oldenburg, München Wien

    Google Scholar 

  • Roux W (1896) Über die Dicke der statischen Elementarteile und die Maschenweite der Substantia spongiosa der Knochen. Z Orthop Chir 4 (Separatdruck)

  • Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5:300–310

    Google Scholar 

  • Sah RL-Y, Kim Y-L, Doong J-YH, Grodzinsky AJ, Plaas AKH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636

    Google Scholar 

  • Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strainrelated changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788

    CAS  PubMed  Google Scholar 

  • Tillmann B (1971) Die Beanspruchung des menschlichen Ellenbogengelenkes. 1. Funktionelle Morphologie der Gelenkflächen. Z Anat Entwicklungsgesch 134:328–342

    Google Scholar 

  • Tillmann B (1978) A contribution to the functional morphology of articular surfaces. In: Bargmann W, Doerr W (eds) Normal and pathological anatomy 34. Thieme, Stuttgart

    Google Scholar 

  • Tillmann B, Brade H (1980) Morphologische und biomechanische Untersuchungen an der Facies articularis patellae. Orthop Prax 6:462–467

    Google Scholar 

  • Wiberg G (1941) Roentgenographic and anatomic studies on the femoropatellar joint. With special reference to chondromalacia patellae. Acta Orthop Scand 12:319–410

    Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milz, S., Eckstein, F. & Putz, R. The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol 192, 437–444 (1995). https://doi.org/10.1007/BF00240376

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240376

Key words

Navigation