Skip to main content
Log in

Evoked potential changes in rat hippocampal slices under helium pressure

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

High pressures of helium affect the physiology of the central nervous system in animals and humans. We examined these effects in rat hippocampal slices. The in vitro preparation displayed a reversible reduction in postsynaptic and antidromic field potentials of CA1 pyramidal cells, but no significant change in the amplitude of the afferent volley. Although the subliminal synaptic response of CA1 neurons was depressed, the ability of these cells to produce population spikes was enhanced. These changes resembled those previously found in vivo in the rat hippocampus. The present results support the hypothesis of a helium pressure-induced depolarization of hippocampal neurons. Other possible mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P (1960) Interhippocampal impulses. II. Apical dendritic activation of CA1 neurons. Acta Physiol Scand 48: 178–208

    Google Scholar 

  • Andersen P, Silfvenius H, Sundberg SH, Sveen O, Wigström H (1978) Functional characteristics of unmyelinated fibers in the hippocampal cortex. Brain Res 144: 11–18

    Google Scholar 

  • Bennett PB (1975) The high pressure nervous syndrome: man. In: Bennett PB, Elliott DM (eds) The physiology and medecine of diving and compressed air work, London, pp 248–263

  • Brauer RW (1975) The high pressure nervous syndrome: animals. In: Bennett PB, Elliott DM (eds) The physiology and medecine of diving and compressed air work, London, pp 231–247

  • Brauer RW, Beaver RW, Lasher RD, Mc Call RD, Venters R (1979a) Comparative physiology of the high-pressure neurological syndrome — compression rate effects. J Appl Physiol Resp Environ Exercise Physiol 46: 128–135

    Google Scholar 

  • Brauer RW, Mansfield WM, Beaver RW, Gillen HW (1979b) Stages in development of high pressure neurological syndrome in the mouse. J Appl Physiol Resp Environ Exercise Physiol 46: 756–765

    Google Scholar 

  • Brauer RW, Hogan PM, Hugon M, Macdonald AG, Miller KW (1982) Patterns of interaction of effects of light metabolically inert gases with those of hydrostatic pressure as such a review. Undersea Biomed Res 9: 353–396

    Google Scholar 

  • Campenot RB (1975) The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular junction. Comp Biochem Physiol 52B: 133–140

    Google Scholar 

  • Colton CA, Colton JS (1980) An electrophysiological analysis of oxygen and pressure on synaptic transmission. Brain Res 251: 221–227

    Google Scholar 

  • Dudek FE, Andrew RD, MacVicar BA, Snow RV, Taylor CP (1963) Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain. In: Jasper HH, van Gelder NM (eds) Basic mechanisms of neuronal hyperexcitability. Liss, New York, pp 31–73

    Google Scholar 

  • Dunwiddie TV, Lynch GS (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol (Lond) 276: 353–367

    Google Scholar 

  • Fagni L, Weiss M, Pellet J, Hugon M (1982) The possible mechanisms of the high pressure-induced motor disturbances in the cat. Electroencephal Clin Neurophysiol 53: 590–601

    Google Scholar 

  • Fagni L, Soumireu-Mourat B, Carlier E, Hugon M (1985) A study of spontaneous and evoked activity in the rat hippocampus under helium-oxygen high pressure. Electroenceph Clin Neurophysiol 60: 267–275

    Google Scholar 

  • Grossman Y, Kendig JJ (1984) Pressure and temperature: time-dependent modulation of membrane properties in a bifurcating axon. J Neurophysiol 52: 692–708

    Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237–243

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Ass Inc, Sunderland Mass

    Google Scholar 

  • Hugon M, Lemaire C (1975) Cycle d'excitabilité de la fibre motrice étudiée chez l'homme normal en hyperbarie à l'helium. Med Sub Hyp 11: 9–17

    Google Scholar 

  • Kendig JJ, Trudell JR, Cohen EN (1975) Effects of pressure and anesthetics on conduction and synaptic transmission. J Pharmacol Exp Ther 195: 216–224

    Google Scholar 

  • Kylstra JA, Nantz R, Crowe J, Wagner W, Saltzmann HA (1967) Hydraulic compression of mice to 166 atmospheres. Science 158: 793–794

    Google Scholar 

  • Lømo T (1971) Patterns of activation in a monosynaptic cortical pathway: the peforant path input of the dentate area of the hippocampal formation. Exp Brain Res 12: 18–45

    Google Scholar 

  • Lundgren CEG, Hornagen HC (1976) Hydrostatic pressure tolerance in liquid-breathing mice. In: Lambertsen CJ (ed) Underwater physiology, Vol V. Bethesda MD, pp 397–404

  • Racine R, Kairiiss E, Smith G (1981) Kindling: the evolution of the burst response versus enhancement. In: Wada JA (ed) Kindling 2. Raven Press, New York, pp 15–29

    Google Scholar 

  • Rostain JC, Dumas JC, Gardette B, Imbert JP, Lemaire C (1984) Effects of addition of nitrogen during rapid compression of baboons. J Appl Physiol Respirat Exercise Physiol 57: 332–340

    Google Scholar 

  • Rostain JC, Naquet R (1974) Le syndrome nerveux des hautes pressions: caractéristiques et évolution en fonction de divers modes de compression. Rev EEG Neurophysiol 4: 107–124

    Google Scholar 

  • Sauter JFL, Braswell LM, Miller KW (1980) Action of anesthetics and high pressures on cholinergic membranes. Prog Anesthesiol 2: 199–207

    Google Scholar 

  • Schwartzkroin PA (1980) Ionic and synaptic determinants of burst generation. In: Lockard JS, Ward AA (eds) Epilepsy: a window to brain mechanisms. Raven Press, New York, pp 83–95

    Google Scholar 

  • Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147: 117–130

    Google Scholar 

  • Taylor CP, Dudek FE (1984) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52: 126–142

    Google Scholar 

  • Taylor RF, Robertson RF (1980) Effects of normo- and hyperbaric pressure on an acetylcholine-binding proteoglycolipid from rat gastrocnemius tissue. J Neurochem 34: 1166–1174

    Google Scholar 

  • Wann KT, Macdonald AG (1980) The effects of pressure on excitable cells. Comp Biochem Physiol 66A: 1–12

    Google Scholar 

  • Wann KT, Macdonald AG, Harper AA, Ashford MLJ (1981) Transient versus steady-state effects of high hydrostatic pressure. In: Bachrach AJ, Matzen MM (eds) Underwater physiology,Vol VII. Undersea Med Soc, Bethesda, pp 621–627

    Google Scholar 

  • Wong RKS, Traub RD (1983) Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in the CA2-CA3 region. J Neurophysiol 49: 442–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagni, L., Zinebi, F. & Hugon, M. Evoked potential changes in rat hippocampal slices under helium pressure. Exp Brain Res 65, 513–519 (1987). https://doi.org/10.1007/BF00235974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235974

Key words

Navigation