Skip to main content
Log in

The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

We have monitored transient GUS expression 4–5 days after cocultivation of leaf explants with Agrobacterium, in order to optimise parameters of cocultivation and so develop an efficient, reproducible gene transfer system in kiwifruit. Factors that were important included the health of the explant, the strain of Agrobacterium, and the binary vector used. Pre-culture of the leaf explants before cocultivation inhibited gene transfer at the cut edge. Placing the explants on moist filter paper during cocultivation gave increased frequencies of gene transfer. Stably transformed, kanamycin-resistant plants were obtained at good frequency from the optimised system. PCR and Southern analysis of the regenerated plants confirmed their transgenic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In “Plant molecular biology manual”, Kluwer Academic Publishers, Dordrecht, A3: 1–19.

  • Atkinson RG, Candy CJ, Gardner RC (1990) New Zealand J. Crop Hort. Sci. 18: 153–156

    Google Scholar 

  • Atkinson RG, Gardner RC (1991) Plant Cell Rep.: 10: 208–212

    Google Scholar 

  • Atkinson RG and Gardner RC (1993) Plant Cell Rep. 12: 347–351

    Google Scholar 

  • Candy CJ (1987) MSc thesis, University of Auckland, New Zealand

    Google Scholar 

  • Crowhurst RN (1990) PhD Thesis, University of Auckland, NewZealand

    Google Scholar 

  • Dong J-Z, McHughen A (1991) Plant Cell Rep. 10: 555–560

    Google Scholar 

  • Fillatti JJ, Kiser J, Rose R, Comai L (1987a) Bio/Tech. 5: 726–730

    Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987b) Mol. Gen. Genet. 206: 192–199

    Google Scholar 

  • Fraley RT, Horsch RB, Matzke A, Chilton M-D, Chilton WS, Sanders PR (1984) Plant Mol. Biol. 3: 371–378

    Google Scholar 

  • Higgens ES, Hulme JS, Shields R (1992) Plant Science 82: 109–118

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303: 179–180

    CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J. Bacteriol. 168: 1291–1301

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227: 1229–1231

    CAS  Google Scholar 

  • Janssen BJ (1991) PhD Thesis, University of Auckland, New Zealand

    Google Scholar 

  • Janssen B-J, Gardner RC (1990) Plant Mol.Biol. 14: 61–72

    CAS  PubMed  Google Scholar 

  • Ledger SE, Deroles SC, Given NK (1991) Plant Cell Rep. 10: 195–199

    Google Scholar 

  • Li X-Q, Liu C-N, Ritchie SW, Peng J, Gelvin SB, Hodges TK (1992) Plant Mol.Biol. 20: 1037–1048

    Google Scholar 

  • Lu C-Y, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling MJ (1991) Bio/Tech. 9: 864–868

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Plant Cell Rep. 5: 81–84

    Google Scholar 

  • Mullins MG, Tang FCA, Facciotti D (1990) Bio/Tech. 8: 1041–1045

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. plant. 15: 473–497

    Google Scholar 

  • Murray MG, Thompson WF (1980) Nucl. Acids Res. 8: 4321–4325

    Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990) Plant Cell Rep. 9: 293–298

    Google Scholar 

  • Rained DM, Bottino P, Gordon MP, Nester EW (1990) Bio/Tech. 8: 33–38

    Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Methods in Enzymology 153: 253–277

    Google Scholar 

  • Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Plant Cell Rep. 10: 291–295

    Google Scholar 

  • Schmidt R, Willmitzer L (1988) Plant Cell Rep. 7: 583–586

    Google Scholar 

  • Sciaky D, Montoya AL, Chilton M-D (1978) Plasmid 1: 238–253

    Google Scholar 

  • Snowden K (1991) MSc thesis, University of Auckland, New Zealand

    Google Scholar 

  • Taylor B, Powell A (1983) Focus 4: 4–6

    Google Scholar 

  • Uematsu C, Murase M, Ichikawa H, Imamura J (1991) Plant Cell Rep. 10: 286–290

    Google Scholar 

  • Van Wordragen MF, De Jong J, Schornagel MJ, Dons HJM (1992) Plant Science 81: 207–214

    Google Scholar 

  • Veluthambi K, Krishnan M, Gould JH, Smith RH, Gelvin SB (1989) J. Bacteriol. 171: 3696–3703

    Google Scholar 

  • White FF, Nester EW (1980) J. Bacteriol. 144: 710–720

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, BJ., Gardner, R.C. The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Reports 13, 28–31 (1993). https://doi.org/10.1007/BF00232310

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232310

Keywords

Navigation