Skip to main content
Log in

Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avanzini G, Mancia D, Pellicioli G (1969) Ascending and descending connections of the insular cortex of the cat. Arch Ital Biol 107: 696–714

    Google Scholar 

  • Berkeley KJ (1983) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon. J Comp Neurol 220: 229–251

    Google Scholar 

  • Burton H, Mitchell G, Brent D (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210: 109–135

    Google Scholar 

  • Carreras M, Anderson SA (1983) Functional properties of neurons of the anterior ectosylvian gyrus of the cat. J Neurophysiol 26: 100–126

    Google Scholar 

  • Casagrande VA, Harting JK, Hall WC, Diamond IT, Martin GF (1972) Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers. Science 177: 444–447

    Google Scholar 

  • Cavada C (1984) Transcortical sensory pathways to the prefrontal cortex with special attention to the olfactory and visual modalities. In: Reinoso-Suárez F, Ajmone-Marsan C (eds) Cortical integration. Basic, archicortical and neocortical association levels of neural integration. IBRO Monograph Series, Raven Press, New York, pp 317–328

    Google Scholar 

  • Cavada C, Reinoso-Suárez F (1981) Intrahemispheric corticocortical connections to the prefrontal cortex in the cat. Brain Res 223: 128–133

    Google Scholar 

  • Clemo HR, Stein BE (1982) Somatosensory cortex: A “new” somatotopic representation. Brain Res 235: 162–168

    Google Scholar 

  • Colavita FB, Weisberg DH (1978) Spatio-temporal pattern discrimination in cats with insular-temporal lesions. Brain Res Bull 3: 7–10

    Google Scholar 

  • Darian-Smith I, Isbister J, Mok H, Yokota T (1966) Somatic sensory cortical projections areas excited by tactile stimulation of the cat: a triple representation. J Physiol (Lond) 182: 671–689

    Google Scholar 

  • Desmedt JM, Mechelse KA (1959) Mise en evidence d'une quatrième aire de projection acoustique dans l'ecorce cérébrale du chat. J Psysiol (Paris) 51: 448–449

    Google Scholar 

  • Diamond IT (1979) The subdivisions of neocortex: a proposal to revise the traditional view of sensory, motor, and association areas. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology, Vol 8. Academic Press, New York, pp 1–43

    Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173: 629–654

    Google Scholar 

  • Graybiel AM (1972) Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res 44: 90–125

    Google Scholar 

  • Gracbiel AM (1973) The thalamo-cortical projection of the so-called posterior nuclear group; a study with anterograde degeneration methods in the cat. Brain Res 49: 229–244

    Google Scholar 

  • Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5: 1175–1238

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Berson DM (1981) On the relation between transthalamic and transcortical pathways in the visual system. In: Schmitt FO, Worden FG, Dennis F (eds) The organization of the cerebral cortex. MIT Press, Cambridge MA, pp 286–319

    Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420

    Google Scholar 

  • Heath CJ, Jones EG (1971a) Anatomical organization of the suprasylvian gyrus of the cat. Ergeb Anat Entwicklungsgesch 45: 1–64

    Google Scholar 

  • Heath CJ, Jones EG (1971b) An experimental study of ascending connections from posterior group of thalamic nuclei in the cat. J Comp Neurol 41: 397–426

    Google Scholar 

  • Imig TJ, Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J Comp Neurol 192: 293–332

    Google Scholar 

  • Jimenez-Castellanos Jr J, Reinoso-Suárez F (1985) Topographical organization of the afferent connections of the principal ventromedial thalamic nucleus in the cat. J Comp Neurol (in press)

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of the thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154: 395–432

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–829

    CAS  PubMed  Google Scholar 

  • Leo PR, Benevento LA (1969) Auditory-visual interaction in single units in the orbito-insular cortex of the cat. Electroenceph Clin Neurophysiol 26: 395–398

    Google Scholar 

  • McNair JL, Avendaño C (1980) Cortico-cortical afferents of the motor cortex in the cat. Neurosci Lett (Suppl) 5: 10

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Morrison AR, Hand PJ, O'Donoghue J (1970) Contrasting projections from the posterior and ventrobasal thalamic nuclear complexes to the anterior ectosylvian gyrus of the cat. Brain Res 21: 115–121

    Google Scholar 

  • Mucke L, Norita M, Benedek G, Creutzfeldt O (1982) Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp Brain Res 46: 1–11

    Google Scholar 

  • Palmer LA, Rosenquist AC, Tusa RI (1978) The retinotopic organization of the lateral suprasylvian visual areas in the cat. J Comp Neurol 177: 237–256

    Google Scholar 

  • Ramirez-Camacho R, Avendaño C, Reinoso-Suárez F (1984) Thalamic projections to the anterior suprasylvian and posterior sigmoid cortex: an HRP study of the “vestibular areas” of the cerebral cortex in the cat. Brain Res Bull 12: 245–252

    Google Scholar 

  • Reinoso-Suárez F (1961) Topographischer Hirnatlas der Katze. Für experimental-physiologische Untersuchungen, E Merck AG, Darmstadt

    Google Scholar 

  • Reinoso-Suárez F (1984) Connectional patterns in parieto-temporo-occipital association cortex of the feline cerebral cortex. In: Reinoso-Suárez F, Ajmone-Marsan C (eds) Cortical integration. Basic, archicortical and neocortical association levels of neural integration. IBRO Monograph Series, Raven Press, New York, pp 255–278

    Google Scholar 

  • Rispal-Padel L, Massion J (1970) Relations between the ventrolateral nucleus and the motor cortex in the cat. Exp Brain Res 10: 331–339

    Google Scholar 

  • Roda JM, Reinoso-Suárez F (1981) Thalamocortical projections to the anterior ectosylvian sulcus in the cat. Soc Neurosci Abst 7: 397

    Google Scholar 

  • Roda JM, Reinoso-Suárez F (1983) Topographical organization of the thalamic projections to the cortex of the anterior ectosylvian sulcus in the cat. Exp Brain Res 49: 131–139

    Google Scholar 

  • Rodrigo-Angulo ML, Reinoso-Suárez F (1984) Afferent connections to the lateral medial subdivision of the lateral posterior thalamic complex in the cat. Neurosci Lett (Suppl) 18: S23

    Google Scholar 

  • Rose JE (1949) The cellular structure of the auditory region of the cat. J Comp Neurol 91: 409–440

    Google Scholar 

  • Rose JE, Woolsey CN (1958) Cortical connections and functional organization of the thalamic auditory system of the cat. In: Harlow HF, Woolsey CN (eds) Biological Wisconsin Press, Madison, pp 127–150

    Google Scholar 

  • Schlag J, Schlag-Rey M (1970) Induction of oculomotor responses by electrical stimulation of the prefrontal cortex in the cat. Brain Res 22: 1–13

    Google Scholar 

  • Squatrito S, Galleti C, Maioli MG, Battaglini PP (1981) Cortical visual input to the orbito insular cortex in the cat. Brain Res 221: 71–79

    Google Scholar 

  • Tortelly A, Reinoso-Suárez F, Llamas A (1980) Projections from non-visual cortical areas to the superior colliculus demonstrated by retrograde axonal transport of HRP in the cat. Brain Res 188: 543–549

    Google Scholar 

  • Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin Press, Madison, pp 63–81

    Google Scholar 

  • Woolsey CN (1961) Organization of cortical auditory system. In: Rosenblith WA (eds) Principles of sensory communication. MIT Press, Cambridge, MA and Wiley, New York, pp 235–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by FISSS grants 521/81 and 1250/84

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinoso-Suárez, F., Roda, J.M. Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat. Exp Brain Res 59, 313–324 (1985). https://doi.org/10.1007/BF00230911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230911

Key words

Navigation