Skip to main content
Log in

On coronal temperatures, temperature gradients and compositions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Average solar wind properties at 1 AU either alone or together with the electron density distribution are used to obtain or review some results that relate coronal temperatures, temperature gradients, and compositions. Measured values of the temperature (T) and the temperature gradient parameter (δ = -d ln T/d ln r) are used to find compositions that satisfy the equations used to obtain the results. The total energy equation may be satisfied if the thermal conductivity is reduced by considerable depletions of H+ in the corona. The electron energy equation only gives information on coronal compositions that are coupled with dδ/d ln r. The hydrostatic approximation (momentum equation) for the electron density distribution also appears to require considerable depletions of H+ in the corona. Results from the integrated momentum equation for the solar wind support the hydrostatic results; together, they give some information on the minimum value of δ in the outer corona. Some changes in assumptions or values of parameters that may modify these interpretations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1973, Astrophysical Quantities, 2nd ed., Univ. of London, The Athlone Press, 176.

  • Bame, S. J., Asbridge, J. W., Feldman, W. C., and Kearney, P. D.: 1974, Solar Phys. 35, 137.

    Google Scholar 

  • Billings, D. E.: 1966, ‘A Guide to the Solar Corona’, Academic Press, p. 250.

  • Billings, D. E.: 1974, Solar Phys. 38, 181.

    Google Scholar 

  • Billings, D. E. and Lilliequist, C. G.: 1963. Astrophys. J. 137, 16.

    Google Scholar 

  • Burgers, J. M.: 1969, Flow Equations for Composite Gases, Academic Press, New York, pp. 155–158.

    Google Scholar 

  • Chapman, S.: 1958, Proc. Phys. Soc. 72, 353.

    Google Scholar 

  • Chapman, S.: 1962, in J. F. Masi and D. H. Tsai (eds.), Progress in International Research on Thermodynamics and Transport Properties, Academic Press, New York, p. 257.

    Google Scholar 

  • Chapman, S. and Cowling, T. G.: 1970, The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Diodato, L., Moreno, G., Signorini, C., and Ogilvie, K. W.: 1974, J. Geophys. Res. 79, 5095.

    Google Scholar 

  • Formisano, V. and Moreno, G.: 1971, Riv. Nuovo Cimento 1, 365.

    Google Scholar 

  • Geiss, J. Hirt, P., and Leutwyler, H.: 1970, Solar Phys. 12, 458.

    Google Scholar 

  • Hartle, R. E. and Sturrock, P. A.: 1968, Astrophys. J. 151, 1155.

    Google Scholar 

  • Hollweg, J.: 1974, J. Geophys. Res. 79, 3845.

    Google Scholar 

  • Hulst, H. C. van de: 1953, in The Sun, The Univ. of Chicago Press, Chap. 5.

  • Hundhausen, A. J., Bame, S. J., Asbridge, J. R., and Sydoriak, S. J.: 1970, J. Geophys. Res. 75, 4643.

    Google Scholar 

  • Hundhausen, A. J., Bame, S. J., Montgomery, M. D.: 1971, J. Geophys. Res. 76, 5145.

    Google Scholar 

  • Kuperus, M.: 1969, Space Sci. Rev. 9, 713.

    Google Scholar 

  • Montgomery, M. D., Bame, S. J., and Hundhausen, A. J.: 1968, J. Geophys. Res. 73, 4999.

    Google Scholar 

  • Nakada, M. P.: 1974, J. Geophys. Res. 79, 36.

    Google Scholar 

  • Nakada, M. P., Chapman, R. D., Neupert, W. M., and Thomas, R. J.: 1976, Solar Phys. 47, 611.

    Google Scholar 

  • Newkirk, G., Jr.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.

    Google Scholar 

  • Ogilvie, K. W. and Hirshberg, J.: 1974, J. Geophys. Res. 79, 4595.

    Google Scholar 

  • Robbins, D. E., Hundhausen, A. J., and Bame, S. J.: 1970, J. Geophys. Res. 75, 1178.

    Google Scholar 

  • Salat, A.: 1975, Plasma Phys. 17, 589.

    Google Scholar 

  • Spitzer, L., Jr.: 1962, Physics of Fully Ionized Gases, Interscience, New York, pp. 135–145.

    Google Scholar 

  • Spitzer, L., Jr. and Harm, R.: 1953, Phys. Rev. 89, 977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakada, M.P. On coronal temperatures, temperature gradients and compositions. Sol Phys 51, 327–343 (1977). https://doi.org/10.1007/BF00216371

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216371

Keywords

Navigation