Skip to main content
Log in

Fate and effects of soluble or sediment-bound arsenic in oysters (Crassostrea gigas thun.)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Contaminated sediments are a possible source of stress to the benthic biota. In order to examine this way of transfer concurrently with direct exposure, oysters were exposed to As dissolved in natural seawater or loaded to particles. The sediment used as a vector of transfer was a mud from a coastal area devoted to oyster culture, the finest particles of which have been selected. It was submitted to experimental contamination then to in vitro desorption tests, in which enzymes and pH changes were used to mimic the digestive processes in Molluscs. Although different enzymes or pH induced the desorption of 3 to 24% of sediment-bound arsenic, the accumulation of this element in the soft tissues of oysters remained low after exposure to contaminated particles. The uptake of soluble arsenic was also limited although checking the level of arsenic in seawater every day revealed no significant decrease of the contaminant in the experimental medium. However, cytological effects were noted in oysters exposed to sediment-bound arsenic and moreover to soluble arsenic. They consisted of structural alterations of mitochondria and nuclei, suggesting a disturbance of both the cellular respiratory metabolism and nucleotid incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amiard JC (1992) Bioavailability of sediment-bound metals for benthic aquatic organisms. In: Vernet JP (ed) Impact of Heavy Metals on the Environment. Elsevier, Amsterdam, pp 183–202

    Google Scholar 

  • Amiard JC, Ettajani H, Jeantet AY, Ballan-Dufrançais C, Amiard-Triquet C (1995) Bioavailability and toxicity of sediment-bound lead to a filter-feeder Bivalve Crassostrea gigas Thunberg. Bio-Metals 8:280–289

    Google Scholar 

  • Amiard-Triquet C (1989) Bioaccumulation et nocivité relatives de quelques polluants métalliques à l'égard des espèces marines. Bull Ecol 20:129–151

    Google Scholar 

  • Amiard-Triquet C, Martoja R, Marcaillou C (1993) Alternative methodologies for predicting metal transfer in marine food webs including filter-feeders. Wat Sci Technol 25:197–204

    Google Scholar 

  • Andreae MO, Froelich PN (1984) Arsenic, antimony and germanium biogeochemistry in the Baltic Sea. Tellus 36:101–117

    Google Scholar 

  • Berthet B (1986) Etude in situ et expérimentale du devenir de quelques éléments métalliques (Cd, Pb, Cu et Zn) dans un écosystème de zone conchylicole. Thèse de Doctorat, Université de Rennes

  • Bodoy A, Prou P, Berthomé JP (1986) Etude comparative de différents indices de condition chez l'huître creuse (Crassostrea gigas). Haliotis 15:173–182

    Google Scholar 

  • Boucaud-Camou E, Lebesnerais C, Lubet P, Lihrmann I (1983) Dynamique et enzymologie de la digestion chez l'huître Crassostrea gigas (Thunberg). In: IFREMER (ed.) Bases biologiques de l'Aquaculture. Montpellier, Actes de Colloques 1:75–96

    Google Scholar 

  • Bryan GW (1976) Heavy metal contamination in the sea. In: Johnson R (ed) Marine Pollution. Academic Press, London, pp 185–302

    Google Scholar 

  • Bryan GW (1984) Pollution due to heavy metals and their compounds. In: Kinne O (ed) Marine Ecology. John Wiley & Sons Ltd, NY 5(3) 1289–1431

    Google Scholar 

  • Bryant V, Newbery DM, McLusky DS, Campbell R (1985) Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volutator, Macoma balthica, Tubifex costatus) Mar Ecol Progr Ser 24:129–137

    Google Scholar 

  • Calow P (1989) Physiological ecotoxicology; theory, practice and application. In: Lokke H, Tyle H, Bro Rasmussen F (eds) Proc. 1st Eur. Conf. Ecotox. DIS Congress Service, Vanlose, Denmark, pp 23–35

    Google Scholar 

  • Deslous-Paoli JM (1987) Feeding and digestion with Bivalves. In: Bruno A (ed) Nutrition in marine aquaculture. Lisbon, pp 145–198

  • Ettajani H, Amiard JC (1995) Biodisponibilité de quelques métaux fixés sur les matières en suspension (MES) en milieu estuarien. Hydroécol Appl 1–2(7)

  • Ettajani H, Amiard-Triquet C, Amiard JC (1992) Etude expérimentale du transfert de deux éléments traces (Ag, Cu) dans une chaîne trophique marine: eau, particules (sédiment naturel, microalgue), mollusques filtreurs (Crassostrea gigas Thunberg). Wat Air Soil Pollut 65:215–236

    Google Scholar 

  • Fowler BA, Woods JS, Schiller CM (1979) Studies of hepatic mitochrondrial structure and function. Morphometric and Biochemical evaluation of in vivo perturbation by arsenate. Lab Invest 41: 313–320

    Google Scholar 

  • Froelich PN, Kaul LW, Byrd JT, Andreae MO, Roe KK (1985) Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary. Estuar Coast Shelf Sci 20:239–264

    Google Scholar 

  • Goldman M, Dacre JC (1991) Inorganic arsenic compounds: are they carcinogenic, mutagenic, teratogenic? Environ Geoch Health 13:179–191

    Google Scholar 

  • Groot De AJ, Allersma F (1976) Field observations on the transport of heavy metals in sediments. In: Krenkel PA (ed) Heavy metals in the aquatic environment. Pergamon Press, London, pp 85–95

    Google Scholar 

  • Haguenoer JM, Furon D (1982) Arsenic. In: Haguenoer JM, Furon D (eds) Toxicologie et hygiène industrielles, 2. Les dérivés minéraux. Techn et Document. Paris, 183–236

    Google Scholar 

  • Hill IR, Matthiessen P, Heimbach F (eds) (1993) Guidance document on sediment toxicity tests and bioassays for freshwater and marine environments. Proc. SETAC Europe Workshop, Renesse, Netherlands

    Google Scholar 

  • Howard AG, Apte SC, Comber SDW, Morris RJ (1988) Biogeochemical control of the summer distribution and speciation of arsenic in the Tamar estuary. Estuar Coast Shelf Sci 27:427–443

    CAS  PubMed  Google Scholar 

  • IAEA (1987) Intercalibration of Analytical Methods on Marine Environmental Samples, Intern Atomic Energy Agency, Prog Rep No 34, 27 pp

  • Langston WJ (1984) Availability of arsenic to estuarine and marine organisms: A field and laboratory evaluation. Mar Biol 80:143–154

    Google Scholar 

  • Lawrence DR, Scott GI (1982) The determination and use of condition index of oysters. Estuaries 5:23–27

    Google Scholar 

  • Lebesnerais C (1985) Etude expérimentale de la digestion chez l'huître japonaise Crassostrea gigas (Thunberg). Thèse de doctorat, Université de Caen

  • Madsen KN (1992) Effects of arsenic on survival and metabolism of Crangon crangon. Mar Biol 113:37–44

    Google Scholar 

  • Michel P (1985) Arsenic in the marine environment: An overview. Rev Trav Inst Peches Marit 49:175–185

    Google Scholar 

  • Morton B (1983) Feeding and digestion. In: Saleuddin & Wilbur (eds), The Mollusca Physiology, Academic Press 6:65–147

  • Owen G (1974) Feeding and digestion in the bivalvia. In: Adv. Comp. Physiol. Biochem., Lowenstein Ed. 5:1–35

  • Razet D, Héral M, Prou J, Legrand J, Sornin JM (1990) Variations des productions de biodepots (fèces et pseudofèces) de l'huìtre Crassostrea gigas dans un estuaire macrotidal: Baie de Marennes-Oleron. Haliotis 10:143–161

    Google Scholar 

  • Sanders JG (1986) Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton. Can J Fish Aquat Sci 43:694–699

    Google Scholar 

  • Sanders JG, Osman RW, Brownlee DC (1988) Arsenic transport and impact. In, Chesapeake Bay food webs. US/EPA, Rep. CBP/TRS 18/88

  • Sanders JG, Osman RW, Riedel GF (1989) Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebrates Eurytemora affinis, Balanus improvisus ans Crassostrea virginica. Mar Biol 103:319–325

    Google Scholar 

  • Seyler P (1985) Formes chimiques et comportement de l'arsenic en milieu estuarien. Thèse de Doctorat, Université de Paris 6

  • Sinemus HW, Melcher M, Welz B (1981) Influence of valence state on the determination of antimony, arsenic, bismuth, selenium and tellurium in lake water using the hydride AA technique. Atom Spectrosc 2:81–86

    Google Scholar 

  • Sornin JM, Deslous-Paoli JM, Hesse O (1988) Experimental study of the filtration of clays by the oyster Crassostrea gigas (Thunberg): adjustment of particle size for best retention. Aquaculture 69: 355–366

    Google Scholar 

  • Taylor D (1981) A summary of the data on the toxicity of various materials to aquatic life. 9. Arsenic. ICI, Rep. BL/A/2098, 15 pp

  • Ünlü MY, Fowler SW (1979) Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis. Mar Biol 51:209–219

    Google Scholar 

  • Vyncke W, Guns M, Hoenig M, Van Hoeyweghen P (1992) Concentration of arsenic in blue mussels (Mytilus edulis) from the Belgian coast. Lanbouwtijdschrift. Revue de l'Agriculture 45:742–746

    Google Scholar 

  • White SL, Rainbow PS (1984) Regulation of zinc concentration by Palaemon elegans (Crustacea Decapoda): zinc flux and effects of temperature, zinc concentration and moulting. Mar Ecol Prog Ser 16:135–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettajani, H., Amiard-Triquet, C., Jeantet, A.Y. et al. Fate and effects of soluble or sediment-bound arsenic in oysters (Crassostrea gigas thun.). Arch. Environ. Contam. Toxicol. 31, 38–46 (1996). https://doi.org/10.1007/BF00203905

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203905

Keywords

Navigation