Skip to main content
Log in

Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

New high-pressure orthorhombic (GdFeO3-type) perovskite polymorphs of MnSnO3 and FeTiO3 have been observed using in situ powder X-ray diffraction in a diamond-anvil cell with synchrotron radiation. The materials are produced by the compression of the lithium niobate polymorphs of MnSnO3 and FeTiO3 at room temperature. The lithium niobate to perovskite transition occurs reversibly at 7 GPa in MnSnO3, with a volume change of -1.5%, and at 16 GPa in FeTiO3, with a volume change of -2.8%. Both transitions show hysteresis at room temperature. For MnSnO3 perovskite at 7.35 (8) GPa, the orthorhombic cell parameters are a=5.301 (2) A, b=5.445 (2) Å, c=7.690 (8) Å and V= 221.99 (15) Å3. Volume compression data were collected between 7 and 20 GPa. The bulk modulus calculated from the compression data is 257 (18) GPa in this pressure region. For FeTiO3 perovskite at 18.0 (5) GPa, cell parameters are a=5.022 (6) Å, b=5.169 (5) Å, c=7.239 (9) Å and V= 187.94 (36) Å3. Based on published data on the quench phases, the FeTiO3 perovskite breaks down to a rocksalt + baddelyite mixture of “FeO” and TiO2 at 23 GPa. This is the first experimental verification of the pressure-induced breakdown of a perovskite to simple oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya Y, Matsushita T, Nakagawa A, Satow Y, Miyahara J, Chikawa J (1988) Design and performance of an imaging plate system for X-ray diffraction study. Nucl Instrum Methods Phys Res A 288:645–653

    Google Scholar 

  • Bass JD (1984) Elasticity of single-crystal SmAlO3, GdAlO3 and ScAlO3 perovskites. Phys Earth Plan Inter 36:145–156

    Google Scholar 

  • Bukowinski MST, Wolf GH (1986) Equation of state and stability of fluorite-structured.SiO2. J Geophys Res 91:4704–4710

    Google Scholar 

  • Durand B, Loiseleur H (1978) Crystal data for a new variety of the double oxide MnSnO3. J Appl Cryst 11:156–157

    Google Scholar 

  • Galasso FS (1969) Structure, properties and preparation of perovskite type compounds. Pergamon Press, London

    Google Scholar 

  • Ito E, Matsui Y (1979) High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry. Phys Chem Minerals 4:265–274

    Google Scholar 

  • Ko J, Prewitt CT (1988) High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure. Phys Chem Minerals 15:355–362

    Google Scholar 

  • Leinenweber K, Utsumi W, Susaki J, Yagi T (1992) High pressure and temperature study of the stability of MnSnO3 perovskite, in preparation

  • Liu L (1975) High-pressure phase transformations and compression of ilmenite and rutile, I. Experimental results. Phys Earth Planet Inter 10:167–176

    Google Scholar 

  • Liu L (1978) A fluorite isotype of SnO2 and a new modification of TiO2: implications for the Earth's lower mantle. Science 199:422–425

    Google Scholar 

  • Miyahara J, Takahashi K, Amemiya Y, Kamiya N, Satow Y (1986) A new type of X-ray area detector utilizing laser stimulated luminescence. Nucl Instrum Methods Phys Res A 246:572–578

    Google Scholar 

  • Park KT, Terakura K, Matsui Y (1988) Theretical evidence for a new ultrahigh-pressure phase of SiO2. Nature 336:670–672

    Google Scholar 

  • Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R 1 ruby fluorescence line to 195 kbar. J Appl Phys 48:2774–2780

    Google Scholar 

  • Ramsey WH (1964) On the compressibility of the Earth. Monthly Notices Roy Astron Soc, Geophys Suppl 5, pp 409–426

  • Ringwood AE (1970) Phase transformations and the constitution of the mantle. Phys Earth Planet Inter 3:109–155

    Google Scholar 

  • Reid AF, Ringwood AE (1975) High-pressure modification of ScA-lO3 and some geophysical implications. J Geophys Res 80:3363–3370

    Google Scholar 

  • Ross NL, Ko J, Prewitt CT (1989) A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys Chem Minerals 16:621–629

    Google Scholar 

  • Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O, Kusaba K (1991) Baddeleyite-type high-pressure phase of TiO2. Science 251:786–788

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B26:925–946

    Google Scholar 

  • Shannon RD, Prewitt CT (1970) Synthesis and structure of a new high-pressure form of Rh2O3. J Solid State Chem 2:134–136

    Google Scholar 

  • Syono Y, Akimoto S, Ishikawa Y, Endoh Y (1969a) A new high-pressure phase of MnTiO3 and its magnetic property. J Phys Chem Solids 30:1665–1672

    Google Scholar 

  • Syono Y, Sawamoto A, Akimoto S (1969b) Disordered ilmenite MnSnO3 and its magnetic property. Solid State Commun 7:713–716

    Google Scholar 

  • Syono Y, Yamauchi H, Ito A, Someya Y, Ito E, Matsui Y, Akaogi M, Akimoto S (1980) Magnetic properties of the disordered ilmenite FeTiO3 II synthesized at very high pressure. In Ferrites: Proceedings of the International Conference, September–October 1980, Japan, 192–195

  • Tsuchida Y, Yagi T (1989) A new, post-stishovite high-pressure polymorph of silica. Nature 340:217–220

    Google Scholar 

  • Yagi T, Suzuki T, Akimoto S (1985) Static compression of Wustite (Fe0.98 O) to 120 GPa. J Geophys Res 90:8784–8788

    Google Scholar 

  • Yvon K, Jeitschko W, Parthe E (1977) LAZY PULVERIX: a computer program for calculating X-ray and neutron diffraction powder patterns. J Appl Cryst 10:73–74

    Google Scholar 

  • Wang Y, Guyot F, Yaganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite. Science 248:468–471

    Google Scholar 

  • Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (Fe-TiO3) at high temperature and at high pressure. Am Min 69:176–185

    Google Scholar 

  • Williams Q, Knittle E, Jeanloz R (1989) Geophysical and crystal chemical significance of (Mg, Fe) SiO3 perovskite. In: Navrotsky A, Weidner DJ (eds) Perovskite: A structure of great interest to geophysics and materials science. Am Geophys Union, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinenweber, K., Utsumi, W., Tsuchida, Y. et al. Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3 . Phys Chem Minerals 18, 244–250 (1991). https://doi.org/10.1007/BF00202576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202576

Keywords