Skip to main content
Log in

Neurogenetic diseases: molecular diagnosis and therapeutic approaches

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

A neurogenetic disorder is defined as a clinical disease caused by a defect in one or more genes which affect the differentiation and function of the neuroectoderm and its derivatives. Genetic findings in various neurogenetic disorders are discussed. Huntington disease, spinobulbar muscular atrophy, and the autosomal dominant cerebellar ataxias are examples of autosomal dominant disorders caused by the expansion of trinucleotides (CAG) within disease genes. The CAG expansions appear to result in a gain of gene function. Prenatal, presymptomatic, and differential diagnostic tests are based on the detection of the repeat expansions. Point mutations within disease genes result in many additional neurogenetic disorders. An autosomal dominant form of amyotrophic lateral sclerosis and various types of craniosynostotic syndromes are described. The mutations in the disease genes also appear to result in a gain of gene function. Molecular diagnosis in these disorders is based on the direct examination of the mutated gene by methods such as single-strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, and direct DNA sequencing. In many neurogenetic disorders the disease gene has not yet been identified. Here molecular diagnosis relies on indirect approaches based on methods such as the analysis of linkage and of allelic association. Hereditary forms of dystonia are presented as examples. Common sporadic neurological disorders such as Alzheimer and Parkinson diseases frequently have multifactorial causes. Investigations into the molecular basis and the development of diagnostic tests in these two important diseases are discussed. At present no curative therapies exist in neurogenetic disorders. Gene therapeutic approaches, however, provide promise for a cure in at least some of these diseases. Basic principles of gene therapy are explained and attempts at gene therapy in Alzheimer and Parkinson diseases are described. Finally, some of the many obstacles are summarized that must be overcome before gene therapy becomes feasible in most monogenic neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD :

Alzheimer disease

ALS :

Amyotrophic lateral sclerosis

apoE :

Apolipoprotein E

APP :

Amyloid precursor protein

AR :

Androgen receptor

DGGE :

Denaturing gradient gel electrophoresis

DRPLA :

Dentatorubral pallidoluysian atrophy

HD :

Huntington disease

MJD :

Machado-Joseph diseas

NGF :

Nerve growth factor

PCR :

Polymerase chain reaction

PD :

Parkinson disease

SBMA :

Spinobulbar muscular atrophy

SCA :

Spinocerebellar ataxias

SSCP :

Single-strand conformation polymorphism

References

  1. Müller U, Graeber MB, Haberhausen G, Köhler A (1994) Molecular basis and diagnosis of neurogenetic disorders. J Neurol Sci 124:119–140

    Google Scholar 

  2. Baraitser M (1990) The genetics of neurological disorders, 2nd edn. Oxford Medical, Oxford New York Tokyo

    Google Scholar 

  3. Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983

    Article  PubMed  Google Scholar 

  4. LaSpada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    Google Scholar 

  5. Kremer B, Weber B, Hayden MR (1992) New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 2:321–335

    Google Scholar 

  6. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306:234–238

    CAS  PubMed  Google Scholar 

  7. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet 4:398–403

    Google Scholar 

  8. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, Gray J, Conneally P, Young A, Penney J, Hollingsworth Z, Shoulson I, Lazzarini A, Falek A, Koroshetz W, Sax D, Bird E, Vonsattel J, Bonilla E, Alvir J, Conde JB, Cha J-H, Dure L, Comez F, Ramos M, Sanchez-Ramos J, Snodgrass S, De Young M, Wexler N, Moscowitz C, Penchaszadeh G, MacFarlane H, Anderson M, Jenkins B, Srinidhi J, Barnes G (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet 4:387–392

    Google Scholar 

  9. Goldberg YP, Andrew SE, Clarke LA, Hayden MR (1993) A PCR method for accurate assessment of trinucleotide repeat expansion in Huntington diesease. Hum Mol Genet 2:635–636

    Google Scholar 

  10. Telenius H, Kremer HPH, Theilmann J, Andrew SE, Almqvist E, Anvret M, Greenberg C, Greenberg J, Lucotte G, Squitieri F, Starr E, Goldberg YP, Hayden MR (1993) Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet 2:1535–1540

    CAS  PubMed  Google Scholar 

  11. Riess O, Noerremoelle A, Soerensen SA, Epplen J (1993) Improved PCR conditions for the stretch of (CAG)n repeats causing Huntington's disease. Hum Mol Genet 2:637

    CAS  PubMed  Google Scholar 

  12. Goldberg YP, Kremer B, Andrew SE, Theilmann J, Graham RK, Squitieri F, Telenius H, Adam S, Sajoo A, Starr E, Heiberg A, Wolff G, Hayden M, R (1993) Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nature Genet 5:174–179

    Google Scholar 

  13. Rubinsztein DC, Leggo J, Barton DE, Ferguson-Smith MA (1993) Site of (CCG) polymorphism in the HD gene. Nature Genet 5:214–215

    Google Scholar 

  14. Andrew SE, Goldberg YP, Theilmann J, Zeisler J, Hayden MR (1994) A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet 3:65–67

    Google Scholar 

  15. Warner JP, Barron LH, Brock DJH (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chormosomes. Mol Cell Probes 7:235–239

    Google Scholar 

  16. Biancalana V, Serville F, Pommier J, Julien J, Hanauer A, Mandel JL (1992) Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Human Mol Genet 1:255–258

    Google Scholar 

  17. Rosenberg RN (1995) Autosomal dominant cerebellar phenotypes: the genotype has settled the issue. Neurol 45:1–5

    Google Scholar 

  18. Zoghbi HY, Pollack MS, Lyons LA, Ferrell RE, Daiger SP, Beaudet AL (1988) Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann Neurol 23:580–584

    Google Scholar 

  19. Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descend from the grandparents of President Lincoln maps to chromosome 11. Nature Genet 8:280–284

    Google Scholar 

  20. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, Scheufler K, Riley B, Allotey R, Nothers C, Hillermann R, Lunkes A, Khati C, Stevanin G, Hernandez A, Magarino C, Klockgether T, Durr A, Chneiweiss H, Enczmann J, Farrall M, Beckmann J, Mullan M, Wernet P, Agid Y, Freund HJ, Williamson R, Auburger G, Chamberlain S (1993) Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24. 1. Nature Genet 4:295–299

    Google Scholar 

  21. Stevanin G, Cancel G, Durr A, Chneiweiss H, Dubourg O, Weissenbach J, Cann HM, Agid Y, Brice A (1995) The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of ∼3 cM on chromosome 14q24.3-q32.2. Am J Hum Genet 56:193–201

    Google Scholar 

  22. Gardner K, Alderson K, Galster B, Kaplan C, Leppert M, Ptacek L (1994) Autosomal dominant spinocerebellar ataxia: clinical description of a distinct hereditary ataxia and genetic localization to chromosome 16 (SCA4) in a Utah kindred (abstract). Neurol 44 [Suppl]:A361

    Google Scholar 

  23. Orr HT, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet 4:221–226

    Google Scholar 

  24. Schöls L, Vieira-Saecker AMM, Schöls S, Przuntek H, Epplen JT, Riess O (1995) Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet 4:1001–1005

    Google Scholar 

  25. Haberhausen G, Damian MS, Leweke F, Müller U (1995) Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J Neurol Sci 132:71–75

    Google Scholar 

  26. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32. 1. Nature Genet 8:221–228

    Google Scholar 

  27. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet 6:9–13

    Google Scholar 

  28. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada M (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet 6:14–18

    Google Scholar 

  29. Komure O, Sano A, Nishino N, Yamauchi N, Ueno S, Kondoh K, Sano N, Takahashi M, Murayama N, Kondo I, Nagafuchi S, Yamada M, Kanazawa I (1995) DNA analysis in hereditary dentatorubrapallidoluysian atrophy: correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45:143–149

    Google Scholar 

  30. Genis D, Matilla T, Volpini V, Rosell J, Davalos A, Ferrer I, Molins A, Estivill X (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45:24–30

    Google Scholar 

  31. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, Oregan JP, Deng HX, Rahmani Z, Krizus A, Mckennayasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Vandenbergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericakvance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  32. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericakvance MA, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051

    CAS  PubMed  Google Scholar 

  33. Ikeda M, Abe K, Aoki M, Ogasawara M, Kameya T, Watanabe M, Shoji M, Hirai S, Itoyama Y (1995) A novel point mutation in the Cu/Zn superoxide dismutase gene in a patient with familial amyotrophic lateral sclerosis. Hum Mol Genet 4:491–492

    CAS  PubMed  Google Scholar 

  34. Kostrzewa M, Burck-Lehmann U, Müller U (1994) Autosomal dominant amyotrophic lateral sclerosis: a novel mutation in the Cu/Zn superoxide dismutase-1 gene. Hum Mol Genet 3:2261–2262

    Google Scholar 

  35. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH, Jr., Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296

    Google Scholar 

  36. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng H-X, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–1775

    CAS  PubMed  Google Scholar 

  37. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    CAS  PubMed  Google Scholar 

  38. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579–1583

    Google Scholar 

  39. Myers RM, Lumelsky N, Lerman LS, Maniatis T (1985) Detection of single base substitutions in total genomic DNA. Nature 313:495–498

    Google Scholar 

  40. Müller U, Warman ML, Mulliken JB, Weber JL (1993) Assignment of a gene locus involved in craniosynostosis to chromosome 5qter. Hum Mol Genet 2:119–122

    Google Scholar 

  41. Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S (1994) Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet 8:98–103

    Google Scholar 

  42. Steinberger D, Mulliken JB, Müller U (1995) Predisposition for cysteine substitutions in the immunoglobulin-like chain of FGFR2 in Crouzon syndrome. Hum Genet 96:113–115

    Google Scholar 

  43. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ash worth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P, Malcolm S, Winter RM, Reardon W (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet 9:165–172

    Google Scholar 

  44. Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao J, Charnas LR, Jackson CE, Jaye M (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in the fibroblast growth factor receptor. Nature Genet 8:275–279

    Google Scholar 

  45. Lajeunie E, Ma HW, Bonaventure J, Munnich A, Le Merrer M, Renier D (1995) FGFR2 mutations in Pfeiffer syndrome. Nature Genet 9:108

    Google Scholar 

  46. Rutland P, Pulleyn LJ, Reardon W, Baraitser M, Hayward R, Jones B, Malcolm S, Winter RM, Oldridge M, Slaney SF, Poole MD, Wilkie AOM (1995) Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet 9:173–176

    Google Scholar 

  47. Lu X, Perkins LA, Perrimon N (1993) The torso pathway in Drosophila: a model system to study receptor tyrosine kinase signal transduction. Development [Suppl]:47–56

  48. Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, Pulleyn LJ, Rutland P, Reardon W, Malcolm S, Winter RM (1994) A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet 8:269–274

    Google Scholar 

  49. Warman ML, Mulliken JB, Hayward PG, Müller U (1993) Newly recognized autosomal dominant disorder with craniosynostosis. Am J Med Genet 46:444–449

    Google Scholar 

  50. Jabs EW, Müller U, Li X, Ma L, Luo W, Haworth I, Klisak I, Sparkes R, Warman ML, Mulliken JB, Snead M, Maxson R (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450

    Google Scholar 

  51. Müller U, Kupke KG (1990) The genetics of primary torsion dystonia. Hum Genet 84:107–115

    Google Scholar 

  52. Ichinose H, Ohye T, Takahashi EI, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nature Genet 8:236–242

    Google Scholar 

  53. Nygaard TG, Wilhelmsen KC, Risch NJ, Brown DL, Trugman JM, Gilliam TC, Fahn S, Weeks DE (1993) Linkage mapping of doparesponsive dystonia (DRD) to chromosome 14q. Nature Genet 5:386–391

    Google Scholar 

  54. Schwalbe W (1908) Eine eigentümliche tonische Krampfform mit hysterischen Symptomen. Thesis. Schade, Berlin

    Google Scholar 

  55. Risch N, de Leon D, Ozelius L, Kramer P, Almasy L, Singer B, Fahn S, Breakefield X, Bressman S (1995) Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nature Genet 9:152–159

    Google Scholar 

  56. Zeman W, Dyken P (1967) Dystonia musculorum deformans: clinical, genetic, and pathoanatomical studies. Psychiatr Neurol Neurochir 10:77–121

    Google Scholar 

  57. Ozelius L, Kramer PL, Moskowitz CB, Kwiatkowski DJ, Brin MF, Bressman SB, Schuback DE, Falk CT, Risch N, de Leon D, Burke RE, Haines J, Gusella JF, Fahn S, Breakefield XO (1989) Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron 2:1427–1434

    Google Scholar 

  58. Kramer PL, Heiman GA, Gasser T, Ozelius LJ, de Leon D, Brin MF, Burke RE, Hewett J, Hunt AL, Moskowitz C, Nygaard TG, Wilhelmsen KC, Fahn S, Breakefield XO, Risch NJ, Bressman SB (1994) The DYT1 gene on 9q34 is responsible for most cases of early limb-onset idiopathic torsion dystonia in non-Jews. Am J Hum Genet 55:468–475

    Google Scholar 

  59. Ozelius LJ, Kramer PL, Deleon D, Risch N, Bressman SB, Schuback DE, Brin MF, Kwiatkowski DJ, Burke RE, Gusella JF, Fahn S, Breakefield XO (1992) Strong allelic association between the torsion dystonia gene (DYTI) and loci on chromosome 9q34 in Ashkenazi Jews. Am J Hum Genet 50:619–628

    Google Scholar 

  60. Kupke K, Lee LV, Viterbo GH, Arancillo J, Donlon TA, Müller U (1990) X-linked recessive torsion dystonia in the Philippines. Am J Med Genet 36:237–242

    Google Scholar 

  61. Lee LV, Kupke KG, Caballar-Gonzaga F, Hebron-Ortiz M, Müller U (1991) The phenotype of the X-linked dystoniaparkinsonism syndrome. An assessment of 42 cases in the Philippines. Medicine 70:179–187

    Google Scholar 

  62. Kupke KG, Graeber MB, Müller U (1992) Dystonia-parkinsonism syndrome (XDP) locus: flanking markers in Xq12q21.1. Am J Hum Genet 50:808–815

    Google Scholar 

  63. Graeber MB, Kupke KG, Müller U (1992) Delineation of the dystonia-parkinsonism syndrome (XDP) locus in Xq13. Proc Natl Acad Sci USA 89:8245–8248

    Google Scholar 

  64. Müller U, Haberhausen G, Wagner T, Fairweather N, Chelly J, Monaco AP (1994) DXS106 and DXS559 flank the Xlinked dystonia-parkinsonism syndrome locus (DYT3). Genomics 23:114–117

    Google Scholar 

  65. Haberhausen G, Schmitt I, Köhler A, Peters U, Rider S, Chelly J, Terwilliger ID, Monaco AP, Müller U (1995) Assignment of the dystonia-parkinsonism syndrome locus, DYT3, to a small region within a 1. 8 Mb YAC contig of Xq13. 1. Am J Hum Genet 57:644–650

    Google Scholar 

  66. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 262:2551–2556

    Google Scholar 

  67. Selkoe DJ (1991) Amyloid protein and Alzheimers disease. Sci Am 265:40–47

    Google Scholar 

  68. St. George-Hyslop PHS, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growdon J, Bruni A, Foncin JF, Salmon D, Frommelt P, Amaducci L, Sorri S, Piacentini S, Stewart GD, Hobbs WJ, Conneally PM, Gusella JF (1987) The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235:885–890

    Google Scholar 

  69. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991) Early-onset Alzeimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    Google Scholar 

  70. Rosenberg RN (1993) A causal role for amyloid in Alzheimer's disease: the end of the beginning. Neurology 43:851–856

    Google Scholar 

  71. Tanzi RE, Vaula G, Romano DM, Mortilla M, Huang TL, Tupler RG, Wasco W, Hyman BT, Haines JL, Jenkins BJ, Kalaitsidaki M, Warren AC, McInnis MC, Antonarakis SE, Karlinsky H, Percy ME, Connor L, Growdon J, Crapper-Mclachlan DR, Gusella JF, St George-Hyslop PH (1992) Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am J Hum Genet 51:273–282

    Google Scholar 

  72. Liddell MB, Bayer AJ, Owen MJ (1995) No evidence that common allelic variation in the amyloid precursor protein (APP) gene confers susceptibility to Alzheimer's disease. Hum Mol Genet 4:853–858

    Google Scholar 

  73. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258:668–671

    Google Scholar 

  74. Alzheimer's disease collaborative group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genet 11:219–222

    Google Scholar 

  75. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque, G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, StGeorge-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754–760

    Google Scholar 

  76. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KAB, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer's disease locus on chromosome I. Science 269:970–972

    Google Scholar 

  77. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu C, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y-H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269:973–977

    Google Scholar 

  78. Pericak-Vance MA, Bebout JL, Gaskell PC, Yamaoka LH, Hung WY, Alberts MJ, Walker AP, Bartlett RJ, Haynes CA, Welsh KA, Earl NL, Heyman A, Clark CM, Roses AD (1991) Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet 48:1034–1050

    Google Scholar 

  79. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein-E type-4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923

    CAS  PubMed  Google Scholar 

  80. Chartier-Harlin MC, Parfitt M, Legrain S, Perez-Tur J, Bousseau T, Evans A, Berr C, Vidal O, Roques P, Gourlet V, Fruchart JC, Delacourt A, Rossor M, Amouyel P (1994) Apolipoprotein E, 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer's disease: analysis of the 19q13. 2 chromosomal region. Hum Mol Genet 3:569–574

    Google Scholar 

  81. Kurz A, Lautenschlager N, Haupt M, Zimmer R, Altland K, von Thuelen B, Lauter H, Müller U (1994) Das Apolipoprotein-E- 4Allel ist ein Risikofaktor für die Alzheimer-Krankheit mit frühem und spätem Beginn. Nervenarzt 65:774–779

    Google Scholar 

  82. Müller U, Kurz A, Lauter H, Altland K (1995) Aktuelle Gesichtspunkte zur Genetik neurodegenerativer dementieller Erkrankungen. Tagungsband, Euromed Verlag (in press)

  83. Kurz A, Altland A, Lautenschlager N, Haupt M, Zimmer R, Gerundt I, Lauter H, Müller U (1996) Apolipoprotein E type 4 allele: influence on the age of onset of Alzheimer's disease and use in clinical diagnosis and counselling. J Neurol (in press)

  84. McKhann G, Drachman, D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 34:939–944

    CAS  PubMed  Google Scholar 

  85. Breitner JCS (1991) Clinical genetics and genetic counseling in Alzheimer disease. Ann Int Med 115:601–606

    Google Scholar 

  86. Harper PS (1993) Practical genetic counselling, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  87. Golbe LI, Lazzarini AM, Schwarz KO, Mark MH, Dickson DW, Duvoisin RC (1993) Autosomal dominant parkinsonism with benign course and typical Lewy-body pathology. Neurology 43:2222–2227

    CAS  Google Scholar 

  88. Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS, Gusella J, Pfeiffer RF, Calne DB, Breakefield XO (1994) Genetic linkage studies in autosomal-dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol 36:387–396

    Google Scholar 

  89. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet I:1269

    Google Scholar 

  90. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 163:1450–1455

    CAS  PubMed  Google Scholar 

  91. Janetzky B, Hauck S, Youdim MBH, Riederer P, Jellinger K, Pantucek F, Zöchling R, Boissl KW, Reichmann H (1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease. Neurosci Lett 169:126–128

    Article  CAS  PubMed  Google Scholar 

  92. Mann VM, Cooper JM, Schapira AHV (1992) Quantitation of a mitochondrial DNA deletion in Parkinson's disease. FEBS Lett 299:218–222

    Google Scholar 

  93. Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS, Beal MF, Yang CC, Gearing M, Salvo R, Watts RL, Juncos JL, Hansen LA, Crain BJ, Fayad M, Reckord CL, Wallace DC (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17:171–184

    Google Scholar 

  94. Lücking CB, Kösel S, Mehraein P, Graeber MB (1995) Absence of the mitochondrial A7237T mutation in Parkinson's disease. Biochem Biophys Res Commun 211:700–704

    Google Scholar 

  95. Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR (1992) Mutant debrisoquine hydroxylation genes in Parkinson's disease. Lancet 339:1017–1018

    Google Scholar 

  96. Smith CAD, Gough AC, Leigh PN, Summers BA, Harding AE, Maranganore DM, Sturman SG, Schapira AHV, Williams AC, Spurr NK, Wolf CR (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet 339:1375–1377

    Google Scholar 

  97. Tsuneoka Y, Matsuo Y, Iwahashi K, Takeuchi H, Ichikawa Y (1993) A novel cytochrome P-450IID6 mutant gene associated with Parkinson's disease. J Biochem 114:263–266

    Google Scholar 

  98. During MJ, Naegele JR, O'Malley KL, Geller AI (1994) Longterm behavioral recovery in Parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266:1399–1403

    CAS  PubMed  Google Scholar 

  99. Friedmann T (1994) Gene therapy for neurological disorders. Trends Genet 10:210–214

    Google Scholar 

  100. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    CAS  PubMed  Google Scholar 

  101. Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC (1995) Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nature Genet 10:161–166

    Google Scholar 

  102. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68

    Google Scholar 

  103. Sendtner M, Holtmann B, Kolbeck R, Thönen H, Barde YA (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–758

    Google Scholar 

  104. Ernfors P, Ebendal T, Olson L, Mouton P, Stromberg I, Persson H (1989) A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proc Natl Acad Sci USA 86:4756–4760

    Google Scholar 

  105. Suhr ST, Gage FH (1993) Gene therapy for neurologic disease. Arch Neurol 50:1252–1268

    Google Scholar 

  106. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer's A β-peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet 9:2130

    Google Scholar 

  107. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, Mcconlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimertype neuropathology in transgenic mice overexpressing V717F -amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  108. Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O'Malley KL, Rosenberg MB, Shimohama S, Friedmann T, Gage FH (1989) Grafting fibroblasts genetically modified to produce l-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci USA 86:9011–9014

    CAS  PubMed  Google Scholar 

  109. Jiao S, Gurevich V, Wolff JA (1993) Long-term correction of rat model of Parkinson's disease by gene therapy. Nature 362:450–453

    Google Scholar 

  110. McKusick VA (1995) Online mendelian inheritance in man. Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U., Graeber, M.B. Neurogenetic diseases: molecular diagnosis and therapeutic approaches. J Mol Med 74, 71–84 (1996). https://doi.org/10.1007/BF00196782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196782

Key words

Navigation