Skip to main content
Log in

Temperature coupling in cricket acoustic communication

II. Localization of temperature effects on song production and recognition networks in Gryllus firmus

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Acoustic communication in Gryllus firmus is temperature-coupled: temperature induces parallel changes in male calling song temporal pattern, and in female preference for song. Temperature effects on song production and recognition networks were localized by selectively warming head or thorax or both head and thorax of intact crickets, then eliciting aggression song production (males) or phonotaxis to synthetic calling song (females). Because male song is produced by a thoracic central pattern generator (CPG), and because head ganglia are necessary for female song recognition, measurements of female phonotaxis under such conditions may be used to test the following competing hypotheses about organization of the song recognition network: 1. A set of neurons homologous to the male song CPG exist in the female, and are used as a template that determines preferred values of song temporal parameters for song pattern recognition (the common neural elements hypothesis), and 2. temporal pattern preference is determined entirely within the head ganglia.

Neither selective warming of the head nor of the thorax was effective in changing female song preference, but simultaneous warming of head and thorax shifted preference toward a faster song in most preparations, as did warming the whole animal by raising ambient temperature. These results suggest that phonotactic preference for song temporal pattern is plurisegmentally determined in field crickets.

Selective wanning experiments during aggression song production in males revealed that syllable period is influenced but not completely determined by thoracic temperature; head temperature is irrelevant. The song CPG appears to receive some rate-setting information from outside the thoracic central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS :

aggression song

CP :

chirp period

CPG :

central pattern generator

CS :

calling song

SP :

syllable period

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Google Scholar 

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygro-receptors. Annu Rev Entomol 30:273–295

    Google Scholar 

  • Atkins S, Atkins G, Rhodes M, Stout JF (1989) Influence of syllable period on song encoding properties of an ascending auditory interneuron in the cricket Acheta domestica. J Comp Physiol A 165:825–834

    Google Scholar 

  • Bauer M, Heiversen O von (1987) Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. J Comp Physiol A 161:95–101

    Google Scholar 

  • Bentley DR (1969a) Intracellular activity in cricket neurons during generation of song patterns. Z Vergl Physiol 62:267–283

    Google Scholar 

  • Bentley DR (1969b) Intracellular activity in cricket neurons during the generation of behavior patterns. J Insect Physiol 15:677–699

    Google Scholar 

  • Bentley DR (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol 116:19–38

    Google Scholar 

  • Bentley DR, Hoy RR (1970) Postembryonic development of adult motor patterns in crickets: a neural analysis. Science 170:1409–1411

    Google Scholar 

  • Bentley DR, Kutsch W (1966) The neuromuscular mechanism of stridulation in crickets (Orthoptera: Gryllidae). J Exp Biol 45:151–164

    Google Scholar 

  • Boake CRB (1991) Coevolution of senders and receivers of sexual signals: genetic coupling and genetic correlations. Trends Ecol Evol 6:225–227

    Google Scholar 

  • Butlin RK, Ritchie MG (1989) Genetic coupling in mate recognition systems: what is the evidence? Biol J Linn Soc 37:237–246

    Google Scholar 

  • Doherty JA (1985a) Temperature coupling and “trade-off” phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J Exp Biol 114:17–35

    Google Scholar 

  • Doherty JA (1985b) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156:787–801

    Google Scholar 

  • Doherty JA (1991) Song recognition and localization in the phonotaxis behavior of the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). J Comp Physiol A 168:213–222

    Google Scholar 

  • Doherty JA, Gerhardt HC (1984) Acoustic communication in hybrid treefrogs: sound production by males and selective phonotaxis by females. J Comp Physiol A 154:319–330

    Google Scholar 

  • Doherty JA, Pires A (1987) A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). J Exp Biol 130:425–432

    Google Scholar 

  • Elliot CJH (1983) Wing hair plates in crickets: physiological characteristics and connections with stridulatory motor neurones. J Exp Biol 107:21–47

    Google Scholar 

  • Elsner N (1973) The central nervous control of courtship behaviour in the grasshopper Gomphocerippus rufus L. In: Neurobiology of invertebrates (symposium). Hung Acad Sciences, Tihany, Hungary, pp 261–287

    Google Scholar 

  • Elsner N (1974a) Neuroethology of sound production in gomphocerine grasshoppers. I. Song patterns and stridulatory movements. J Comp Physiol 88:67–102

    Google Scholar 

  • Elsner N (1974b) Neural economy: bifunctional muscles and common central pattern elements in leg and wing stridulation of the grasshopper Stenobothrus rubicundus Germ. (Orthoptera: Acrididae). J Comp Physiol 89:227–236

    Google Scholar 

  • Elsner N (1983) A neuroethological approach to the phylogeny of leg stridulation in gomphocerine grasshoppers. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 54–68

    Google Scholar 

  • Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: physiology and central projections. J Comp Physiol 137:27–38

    Google Scholar 

  • Gerhardt HC, Doherty JA (1988) Acoustic communication in the gray treefrog Hyla versicolor: evolutionary and neurobiological implications. J Comp Physiol A 162:261–278

    Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. I. Anatomy and physiology of descending cephalothoracic interneurons. J Comp Physiol A 158:413–427

    Google Scholar 

  • Hennig RM (1989) Neuromuscular activity during stridulation in the cricket Teleogryllus commodus. J Comp Physiol A 165:837–846

    Google Scholar 

  • Hoy RR (1974) Genetic control of acoustic behavior in crickets. Am Zool 14:1067–1080

    Google Scholar 

  • Hoy RR (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37:2316–2323

    Google Scholar 

  • Hoy RR, Paul RC (1973) Genetic control of song specificity in crickets. Science 180:82–83

    Google Scholar 

  • Hoy RR, Hahn J, Paul RC (1977) Hybrid cricket auditory behavior: Evidence for genetic coupling in animal communication. Science 195:82–84

    Google Scholar 

  • Huber F (1963) The role of the central nervous system in Orthoptera during the coordination and control of stridulation. In: Busnel RG (ed) Acoustic behavior of animals. Elsevier, Amsterdam London New York, pp 440–488

    Google Scholar 

  • Janiszewski J, Otto D (1988) Modulation of activity of identified suboesophageal neurons in the cricket Gryllus bimaculatus by local changes in body temperature. J Comp Physiol A 162:739–746

    Google Scholar 

  • Janiszewski J, Otto D (1989) Responses and song pattern copying of omega-type I-neurons in the cricket, Gryllus bimaculatus, at different prothoracic temperatures. J Comp Physiol A 164:443–450

    Google Scholar 

  • Kalmring K (1975) The afferent auditory pathway in the ventral cord of Locusta migratoria (Acrididae). I. Synaptic connectivity and information processing among the auditory neurons of the ventral cord. J Comp Physiol 104:103–141

    Google Scholar 

  • Kutsch W (1969) Neuromuskulare Aktivitat bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378

    Google Scholar 

  • Kutsch W, Huber F (1970) Zentrale versus periphere Kontrolle des Gesanges von Grillen (Gryllus campestris). Z Vergl Physiol 67:140–159

    Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J Comp Physiol 81: 115–119

    Google Scholar 

  • Michelsen A (1974) Hearing in invertebrates. In: Autrum H (ed) Handbook of sensory physiology V/I. Springer, Berlin Heidelberg New York, pp 389–422

    Google Scholar 

  • Miles CI (1985) The effects of behaviourally relevant temperatures on mechanosensory neurones of the grasshopper, Schistocerca americana. J Exp Biol 116:121–139

    Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    Google Scholar 

  • Möss D (1968) Proprioceptoren im Thorax und Abdomen von Grillen (Orthoptera, Gryllidae). Zool Anz Suppl 31:123–136

    Google Scholar 

  • Möss D (1971) Sinnesorgane im Bereich des Flügels der Feldgrille (Gryllus campestris L.) und ihre Bedeutung fur die Kontrolle der Singbewegung und die Einstellung der Flügellage. Z Vergl Physiol 73:53–83

    Google Scholar 

  • Otto D, Weber T (1982) Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J Comp Physiol 148: 209–219

    Google Scholar 

  • Otto D, Weber T (1985) Plurisegmental neurons of the cricket Gryllus campestris L. that discharge in the rhythm of its own song. J Insect Physiol 31:537–548

    Google Scholar 

  • Pearce RA, Friesen WO (1985) Intersegmental coordination of the leech swimming rhythm. I. Roles of cycle period gradient and coupling strength. J Neurophysiol 54:1444–1459

    Google Scholar 

  • Pires A, Hoy RR (1992) Temperature coupling in cricket acoustic communication: I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. J Comp Physiol A 171:69–78

    Google Scholar 

  • Pfau HK, Koch UT, Möhl B (1989) Temperature dependence and response characteristics of the isolated wing hinge stretch receptor in the locust. J Comp Physiol A 165:247–252

    Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for speciesspecific calling song recognition in crickets. Science 204:429–432

    Google Scholar 

  • Prestwich KN, Walker TJ (1981) Energetics of singing in crickets: effect of temperature in three trilling species (Orthoptera: Gryllidae). J Comp Physiol B 143:199–212

    Google Scholar 

  • Robertson RM, Pearson KG, Reichert H (1982) Flight interneurons in the locust and the origin of insect wings. Science 217:177–179

    Google Scholar 

  • Ronacher B (1989) Stridulation of acridid grasshoppers after hemisection of thoracic ganglia: evidence for hemiganglionic oscillators. J Comp Physiol A 164:723–736

    Google Scholar 

  • Ronacher B, Heiversen D von, Heiversen O von (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374

    Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally-relevant temporal parameters of a grasshopper's song by an auditory interneuron. J Comp Physiol A 163:517–523

    Google Scholar 

  • Rose GJ, Brenowitz EA, Capranica RR (1985) Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs. J Comp Physiol A 157:763–769

    Google Scholar 

  • Schaffner K-H, Koch UT (1987) Effects of wing campaniform sensilla lesions on stridulation in crickets. J Exp Biol 129: 25–40

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis. I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163:621–631

    Google Scholar 

  • Skovmand O, Pedersen SB (1983) Song recognition and song pattern in a shorthorned grasshopper. J Comp Physiol 153:393–401

    Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Google Scholar 

  • Stout JF, McGhee RW (1988) Attractiveness of the male Acheta domesticus calling song to females. II. The relative importance of syllable period, intensity, and chirp rate. J Comp Physiol A 164:277–287

    Google Scholar 

  • Stumpner A, Ronacher B, Heiversen O von (1991) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. II. Processing of temporal patterns of the song of the male. J Exp Biol 158:411–430

    Google Scholar 

  • Von Heiversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol 81:381–422

    Google Scholar 

  • Von Heiversen D, Heiversen O von (1975a) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae). I. Der Gesang von Artbastarden zwischen Chorthippus biguttulus und Ch. mollis. J Comp Physiol 104:273–299

    Google Scholar 

  • Von Heiversen D, Heiversen O von (1975b) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae). II. Das Lautschema von Artbastarden zwischen Chorthippus biguttulus und Ch. mollis. J Comp Physiol 104:301–323

    Google Scholar 

  • Von Heiversen O (1979) Angeborenes Erkennen akustischer Schlüsselreize. Verh Dtsch Zool Ges 72:42–59

    Google Scholar 

  • Von Heiversen D, Heiversen O von (1981) Korrespondenz zwischen Gesang und auslösendem Schema bei Feldheuschrecken. Nova Acta Leopold NF 54 Nr. 245:449–462

    Google Scholar 

  • Walker TJ (1957) Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann Entomol Soc Am 50:626–636

    Google Scholar 

  • Weber T, Thorson J (1988) Auditory behavior of the cricket. IV. Interaction of direction of tracking with perceived temporal pattern in split-song paradigms. J Comp Physiol A 163:13–22

    Google Scholar 

  • Wiese K, Eilts K (1985) Evidence for matched frequency dependence of bilateral inhibition in the auditory pathway of Gryllus bimaculatus. Zool Jb Physiol 89:181–201

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, A., Hoy, R.R. Temperature coupling in cricket acoustic communication. J Comp Physiol A 171, 79–92 (1992). https://doi.org/10.1007/BF00195963

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195963

Key words