Skip to main content
Log in

Coaction of blue/ultraviolet-A light and light absorbed by phytochrome in controlling growth of pine (Pinus sylestris L.) seedlings

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Photomorphogenesis is a conspicuous feature in conifers. In the case of the shade-intolerant Scots pine (Pinus sylvestris L.), control of stem growth by light is well expressed at the seedling stage and can readily be studied. The present data show that hypocotyl growth is controlled by the far-red-absorbing form of phytochrome (Pfr). However, the Scots pine seedling requires blue or ultraviolet (UV-A) light to become fully responsive to Pfr. Blue/UV-A light has no direct effect on hypocotyl growth and its action appears to be limited to establishing the responsiveness of the seedling to Pfr. This type of coaction between phytochrome and blue/UV-A light has been observed previously in a number of angiosperm seedlings. With regard to the ‘high irradiance reaction’ of phytochrome in long-term far-red light the pine seedling deviates totally from what has been observed in etiolated angiosperms since continuous far-red light has no effect on stem growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

light of wavelength between 500 and 400 nm

FR:

standard far-red light

HIR:

high irradiance reaction of phytochrome

R:

high-fluence-rate red light (ϕR = 0.8)

RG9-light:

long-wavelength far-red light defined by the properties of the Schott RG9 glass filter (ϕRG9<0.01)

ϕ = Pfr/Ptot:

wavelength-dependent photoequilibrium of the phytochrome system (far-red-absorbing form of phytochrome/total phytochrome)

UV-A:

near ultraviolet light of wavelength between 400 and 320 nm

W:

white light

References

  • Drumm, H., Mohr, H. (1978) The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochem. Photobiol. 27, 241–248

    Google Scholar 

  • Drumm-Herrel, H., Mohr, H. (1984) Mode of coaction of phytochrome and blue light photoreceptor in control of hypocotyl elongation. Photochem. Photobiol. 40, 261–266

    Google Scholar 

  • Downs, R.J. (1962) Photocontrol of growth and dormancy in woody plants. In: Tree growth, pp. 133–138, Kozlowski, T.T., ed. Ronald, New York

    Google Scholar 

  • Flaig, H. (1988) Untersuchungen zur Wirkung von Nitrat, Ammonium und Licht auf die Entwicklung der Keimlinge von Pinus sylvestris L. Diploma Thesis, University of Freiburg

  • Galland, P., Senger, H. (1988) New trends in photobiology, the role of flavins as photoreceptors. Photochem. Photobiol. 1, 277–294

    Google Scholar 

  • Grill, R., Spruit, C.J.P. (1972) Properties of phytochrome in gymnosperms. Planta 108, 203–213

    Google Scholar 

  • Hartmann, K.M. (1967) Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22b, 1172–1175

    Google Scholar 

  • Kleshnin, A.F. (1960) Die Pflanze und das Licht. Akademie Verlag, Köln

    Google Scholar 

  • Kramer, P.J., Kozlowski, T.T. (1979) Physiology of woody plants. Academic Press, London

    Google Scholar 

  • Mancinelli, A.L. (1988) Some thoughts about the use of predicted values of the state of phytochrome in plant photomorphogenesis research. Plant Cell Environ. 11, 429–439

    Google Scholar 

  • Mancinelli, A.L., Rabino, I. (1978) The high irradiance responses of plant photomorphogenesis. Bot. Rev. 44, 129–180

    Google Scholar 

  • Mohr, H. (1956a) Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren. Planta 46, 534–551

    Google Scholar 

  • Mohr, H. (1956b) Die Abhängigkeit des Protonemawachstums und der Protonemapolarität vom Licht. Planta 47, 127–158

    Google Scholar 

  • Mohr, H. (1957) Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. (=Brassica alba Boiss.). Planta 49, 389–405

    Google Scholar 

  • Mohr, H. (1972) Photomorphogenesis in fern gametophytes. In: Lectures on photomorphogenesis, pp. 194–204. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mohr, H. (1984) Criteria for photoreceptor involvement. In: Methods in photomorphogenesis. Biological techniques series, pp. 13–42, Smith H., Holmes, M.G., eds. Academic Press, London

    Google Scholar 

  • Mohr, H. (1986) Coaction between pigment systems. In: Photomorphogenesis in plants, pp. 547–564, Kendrick, R.E., Kronenberg, G.H.M., eds. Nijhoff, Dordrecht, The Netherlands

    Google Scholar 

  • Mohr, H., Schoser, G. (1959) Eine interferenzfilter Monochromatoranlage für photobiologische Zwecke. Planta 53, 1–17

    Google Scholar 

  • Mohr, H., Schoser, G. (1960) Eine mit Xanonbögen ausgerüstete Interferenzfilter Monochromatoranlage für kurzwellige sichtbare und langwellige ultraviolette Strahlung. Planta 55, 143–152

    Google Scholar 

  • Morgan, D.C., Rook, D.A., Warrington, I.J., Turnbull, H.L. (1983) Growth and development of Pinus radiata D. Don: the effect of light quality. Plant Cell Environ. 6, 691–701

    Google Scholar 

  • Nyman, B. (1963) Studies on the germination of Scots pine (Pinus sylvestris L.) with special reference to the light factor. Stud. For. Suec. 2, 1–164

    Google Scholar 

  • Oelmüller, R., Mohr, H. (1984) Responsivity amplification by light in phytochrome mediated induction of chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP-dependent, EC 1.2.1.13) in the shoot of the milo (Sorghum vulgare Pers.). Plant Cell Environ. 7, 29–37

    Google Scholar 

  • Oelmüller, R., Mohr, H. (1985) Mode of coaction between blue/UV light and light absorbed by phytochrome in light mediated anthocyanin formation in the milo (Sorghum vulgare Pers.) seedling. Proc. Natl. Acad. Sci. USA 82, 6124–6128

    Google Scholar 

  • Tobin, E.M., Briggs, W.R. (1969) Phytochrome in embryos of Pinus palustris. Plant Physiol. 44, 148–150

    Google Scholar 

  • Warrington, I.J., Rook, D.A., Morgan, D.C., Turnbull, H.L. (1988) The influence of simulated shadelight and daylight on growth development and photosynthesis of Pinus radiata, Agathis australis and Dacrydium cupressinum. Plant Cell Environ. 11, 343–356

    Google Scholar 

  • Vierstra, R.D., Quail, P.H. (1983) Purification and initial characterisation of 124 kilodalton phytochrome from Avena. Biochemistry 22, 2498–2505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by a grant from the Deutsche Forschungsgemeinschaft (Schwerpunkt Physiologie der Bäume).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernbach, E., Mohr, H. Coaction of blue/ultraviolet-A light and light absorbed by phytochrome in controlling growth of pine (Pinus sylestris L.) seedlings. Planta 180, 212–216 (1990). https://doi.org/10.1007/BF00193998

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193998

Key words

Navigation