Skip to main content
Log in

Light dependence of protoplasmic streaming in Nitella flexilis L. as measured by means of laser-velocimetry

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Laser-velocimetry was applied in order to study the effect of light on the velocity of protoplasmic streaming (pps) in Characean cells. A change from dark to light (= 6 W · m−2) leads to an acceleration of streaming by about 15–30% with a time-constant of approx. 300 s. The transition from light to dark causes a transient decrease of velocity below the original dark level. This response occurs with a time constant of about 500 s. It returns to its initial value with a time-constant of about 2000 s. This may indicate that a control loop of cytosolic homeostasis takes a decrease in pCa more seriously than an increase. A possible involvement of temperature effects caused by illumination was excluded by measuring the influence of temperature. Steady-state velocity of streaming changed by 5% per 1° C. Irradiation with infra-red light (λ > 780 nm) did not cause a change in velocity. The absence of a light effect on streaming velocity in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) shows that photosynthesis and not phytochrome is involved. The role of light-induced changes of pCa is discussed, especially with respect to the hypothesis of Vanselow and Hansen (1989, J. Membr. Biol. 110, 175–187) that photosynthesis acts on the plasmalemma K+-channel via light-induced uptake of Ca2+ into the chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASF:

auto structure function

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

pps:

protoplasmic streaming

τL, τD, τC :

time-constants of the light and dark responses, and of a putative Ca-control system

Referencess

  • Allen, N.S. (1976) Undulating filaments in Nitella endoplasm and motive force generation. In: Cell motility, pp. 613–621, Goldmann, D., Pollard, J., Rosenbaum, F., eds. Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  • Beikirch, H. (1925) Die Abhängigkeit der Protoplasma-Strömung von Licht und Temperatur und ihre Bedingtheit durch andere Faktoren. Bot. Arch. 12, 389–445

    Google Scholar 

  • Bottelier, H.P. (1933) Über den Einfluss des Lichtes auf die Plasmaströmung von Avena. Proc. Kon. Akad. Wet. Amsterdam 36, 790–794

    Google Scholar 

  • Bottelier, H.P. (1934) Über den Einfluß äußerer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Rec. Trav. Bot. Néerl. 31, 474–582

    Google Scholar 

  • Brayton, D.B., Goethert, W.H. (1971) A new dual scatter laser Doppler-shift velocity measuring technique. ISA Trans. 10, 40–50

    Google Scholar 

  • Chen, V. (1990) Confocal and Doppler-microscopy of cytoplasmic streaming in Chara. Biophys. J. 57, 375a-375a

    Google Scholar 

  • Clarkson, D.T. (1986) Future development of calcium studies: evidence in the support of concepts. In: Molecular and cellular aspects of calcium in plant development (NATO ASI Series, Series A: Life Sciences 104) pp. 443–447, Trewavas, A.J., ed. Plenum Press, New York

    Google Scholar 

  • Dau, H., Hansen, U.-P. (1988) The involvement of spill-over changes in state 1-state 2 transitions in intact leaves at low light intensities. Biochim. Biophys. Acta 934, 156–159

    Google Scholar 

  • Drain, L.E. (1980) The Laser doppler technique. John Wiley and Sons Ltd. Chichester, New York, Brisbane, Toronto

    Google Scholar 

  • Felle, H. (1988) Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: Interaction of Ca2+ and pH? Planta 176, 248–255

    Google Scholar 

  • Felle, H., Bertl, A. (1986) Light induced cytoplasmic pH-changes and their interrelation to the activity of the electrogenic proton pump in Riccia fluitans. Biochim. Biophys. Acta 848, 176–182

    Google Scholar 

  • Findlay, G.P. (1962) Calcium ions and the action potential in Nitella. Aust. J. Biol. Sci. 15, 69–82

    Google Scholar 

  • Gyenes, M. (1986) Renewal of streaming in the cytoplasm in the cells of Nitella by electric current. Biophysics 31, 688–692

    Google Scholar 

  • Hansen, U.-P. (1990) Implications of control theory for homeostasis and phosphorylation of transport molecules. Bot. Acta 103, 15–23

    Google Scholar 

  • Hansen, U.-P., Dau, H., Brüning, B., Fritsch, T., Moldaenke, C. (1991) Linear analysis applied to the comparative study of the I-D-P phase chlorophyll fluorescence as induced by actinic PS-II light, PS-I light and changes in CO2-concentration. Photosyn. Res. 28, 119–130

    Google Scholar 

  • Hayama, T., Shimmen, T., Tazawa, M. (1979) Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells Protoplasma 99, 305–321

    Google Scholar 

  • Hayashi, T. (1960) Experimental studies on protoplasmic streaming in Characeae. Sci. Pap. Coll. Ge. Edu. Univ. Tokyo 10, 245–282

    Google Scholar 

  • Heimann, K., Kreimer, G., Melkonian, M., Lastzko, E. (1987) Light-induced Ca2+ influx into spinach protoplasts. Z. Naturforsch. 42c, 283–287

    Google Scholar 

  • Hill, S.E. (1941) The relation between protoplasmic streaming and the action potential in Nitella and Chara. Biol. Bull. 81, 296–296

    Google Scholar 

  • Honda, H., Sakuma, T., Saeki, N., Takamatsu, K., Matsuno, K. (1990) Movement of vesicles in cytoplasmic streaming in Plasmodium. Biochem. Biophys. Res. Commun. 172, 1236–1238

    Google Scholar 

  • Kachar, B., Reese, T. (1988) The mechanism of cytoplasmic streaming in characean algal cells: Sliding of endoplasmic reticulum along actin filaments. J. Cell Biol. 106, 1545–1552

    Google Scholar 

  • Kamitsubo, E. (1972) A window technique for detailed observation of characean cytoplasmic streaming. Exp. Cell Res. 74, 613–616

    Google Scholar 

  • Kamiya, N. (1959) Protoplasmic streaming. In: Protoplasmatologia, pp. 1–199, Heilbrunn, L.V., Weber, F., eds. Springer Verlag, Wien

    Google Scholar 

  • Kamiya, N., Kuroda, K. (1956) Velocity distribution of protoplasmic streaming in Nitella cells. Bot. Mag. (Tokyo) 69, 544–554

    Google Scholar 

  • Kamiya, N., Kuroda, K. (1965) Rotational protoplasmic streaming in Nitella and some physical properties of the endoplasm. In: Proceedings of the Fourth International Congress on Rheology Part 4, Symposium on Biorheology, pp. 157–171, Brown University (USA), 26.–30. Aug. 1963, John Wiley and Sons, New York

    Google Scholar 

  • Kamiya, N., Tazawa, M. (1966) Surgical operations on characean cells with special reference to cytoplasmic streaming. Annu. Rep. Biol. Works 14, 95–106

    Google Scholar 

  • Kreimer, G., Melkonian, M., Holtum, J.A.M., Latzko, E. (1985a) Characterization of calcium fluxes across the envelope of intact spinach chloroplasts. Planta 166, 515–523

    Google Scholar 

  • Kreimer, G., Melkonian, M., Latzko, E. (1985b) An electrogenic uniport mediates light-dependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett. 180, 253–258

    Google Scholar 

  • Langley, K.H., Piddington, R.W., Ross, D., Satelle, D.B. (1976) Photo correlation analysis of cytoplasmic streaming. Biochim. Biophys. Acta 444, 893–898

    Google Scholar 

  • Miller, A.J., Sanders, D. (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326, 397–400

    Google Scholar 

  • Mimura, T., Kirino, Y. (1984) Changes in cytoplasmic pH measured by 31P-NMR in cells of Nitellopsis obtusa. Plant Cell Physiol. 25, 813–820

    Google Scholar 

  • Moore, A.L., Åkerman, K.E.O. (1984) Calcium and plant organelles. Plant Cell Environ. 7, 423–429

    Google Scholar 

  • Mustacich, R.V., Ware, B.R. (1974) Observation of protoplasmic streaming by laser-light scattering. Phys. Rev. Lett. 33, 617–620

    Google Scholar 

  • Mustacich, R.V., Ware, B.R. (1976) A study of protoplasmic streaming in Nitella by laser doppler spectroscopy. Biophys. J. 16, 373–388

    Google Scholar 

  • Mustacich, R.V., Ware, B.R. (1977) Velocity distribution of the streaming protoplasm in Nitella flexilis. Biophys. J. 17, 229–241

    Google Scholar 

  • Muto, S., Izawa, S., Miyashi, S. (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett. 139, 250–254

    Google Scholar 

  • Nothnagel, E.A., Barak, L.S., Sanger, J.W., Webb, W.W. (1981) Fluorescence studies on modes of cytochalasin B and phallotoxin on cytoplasmic streaming in Chara. J. Cell Biol. 88, 364–372

    Google Scholar 

  • Okazaki, Y., Iwasaki, N. (1991) Injection of Ca2+ -chelating agent into the cytoplasm retards the progress of turgor regulation upon hypotonic treatment in the alga, Lamprothamnium. Plant Cell Physiol. 32, 185–194

    Google Scholar 

  • Okazaki, Y., Tazawa, M. (1986) Effect of calcium ion on cytoplasmic streaming during turgor regulation in a brakish water charophyte Lamprothamnium. Plant Cell Environ. 9, 491–494

    Google Scholar 

  • Okazaki, Y., Tazawa, M. (1987) Increase in cytoplasmic calcium content in internodal cells of Lamprothamnium upon hypotonic treatment. Plant Cell Environ. 10, 619–621

    Google Scholar 

  • Palevitz, B.A. (1976) Actin cables and cytoplasmic streaming in green plants. In: Cell motility, pp. 601–611, Goldmann, D., Pollard, J., Rosenbaum, F., eds. Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  • Proudlove, M.O., Moore, A.L. (1986) The calcium content of chloroplast, mitochondrial and cytosolic fractions of pea leaf cells. In: Molecular and cellular aspects of calcium in plant development (NATO ASI Series, Series A: Life Sciences 104) pp. 429–430, Trewavas, A.J., ed. Plenum Press, New York

    Google Scholar 

  • Remis, D., Bulychev, A.A., Kurella, G.A. (1988) Photo-induced pH changes in the vicinity of isolated Peperomia metallica chloroplasts. J. Exp. Bot. 39, 633–640

    Google Scholar 

  • Ruck, B. (1991) Distortion of LDA fringe pattern by tracer particles. Exper. Fluids 10, 349–354

    Google Scholar 

  • Sattelle, D.B., Buchan, P.B. (1976) Cytoplasmic streaming in Chara corallina studied by laser light scattering. J. Cell Sci. 22, 633–643

    Google Scholar 

  • Sattelle, D.B., Green, D.J., Gangley, K.H. (1979) Subcellular motions in Nitella flexilis studied by photon correlation spectroscopy. Phys. Scripta 19, 471–475

    Google Scholar 

  • Schulz-DuBois, E.O. (1983) High-resolution intensity interferometry by photon correlation. In: Photon correlation techniques in fluid mechanics, pp. 6–27, Proc. 5th Int. Conference at Kiel-Damp, FRG, May 23–26, 1982, pp. 6–27, Schulz-DuBois, E.O., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulz-DuBois, E.O., Rehberg, I. (1981) Structure function in lieu of correlation function. Appl. Phys. 24, 323–329

    Google Scholar 

  • Sheetz, M.P., Spudich, J.A. (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35

    Google Scholar 

  • Shimmen, T., Yano, M., Kohama, K. (1986) Ca2+ regulation of myosin sliding along Characeae actin bundles. In: Molecular and cellular aspects of calcium in plant development (NATO ASI Series, Series A: Life Sciences 104) pp. 397–398, Trewavas, A.J., ed. Plenum Press, New York

    Google Scholar 

  • Sievers, A., Kramer-Fischer, M., Baun, M., Buchen, B. (1991) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin dependent. Bot. Acta 104, 103–109

    Google Scholar 

  • Takagi, S., Nagai, R. (1985) Light-controlled cytoplasmic streaming in Vallisneria mesophyll cells. Plant Cell Physiol. 26, 941–951

    Google Scholar 

  • Takagi, S., Nagai, R. (1986) Intracellular Ca2+ concentration and cytoplasmic streaming in Vallisneria mesophyll cells. Plant Cell Physiol. 27, 953–959

    Google Scholar 

  • Takagi, S., Nagai, R. (1988) Light-effected Ca2+ fluxes in protoplasts from Vallisneria mesophyll cells. Plant Physiol. 88, 228–232

    Google Scholar 

  • Takagi, S., Yamamoto, K.T., Furuya, M., Nagai, R. (1990) Cooperative regulation of cytoplasmic streaming and Ca2+ fluxes by Pfr and photosynthesis in Vallisneria mesophyll cells. Plant Physiol. 94, 1702–1708

    Google Scholar 

  • Tazawa, M., Kishimoto, U. (1968) Cessation of cytoplasmic streaming of Chara internodes during action potential. Plant Cell Physiol. 9, 361–368

    Google Scholar 

  • Tazawa, M., Shimmen, T. (1982) Artificial control of cytoplasmic pH and its bearing on cytoplasmic streaming, electrogenesis and excitability of characeae cells. Bot. Mag. Tokyo 95, 147–154

    Google Scholar 

  • Tominaga, Y., Kuchitsu, K., Katsuhara, M., Tazawa, M., Miyachi, S. (1991) Cytoplasmic alkalization and cytoplasmic streaming induced by light and histidine in leaf cells of Egeria densa: in vivo 31P-NMR study. Plant Cell Physiol. 32, 261–268

    Google Scholar 

  • Tominaga, Y., Tazawa, M. (1986) Mechanism of Ca2+-control of cytoplasmic streaming in Characeae. In: Molecular and cellular aspects of calcium in plant development (NATO ASI Series, Series A: Life Sciences 104) pp. 399–400, Trewavas, A.J., ed. Plenum Press, New York

    Google Scholar 

  • Tominaga, Y., Shimmen, T., Tazawa, M. (1983) Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cells. Protoplasma 116, 75–77

    Google Scholar 

  • Tsuchiya, Y., Yamazaki, H., Aoki, T. (1991) Steady and transient behaviors of protoplasmic streaming in Nitella internodal cells. Biophys. J. 59, 249–251

    Google Scholar 

  • Tsutsui, I., Nagai, R., Ohkawa, T., Kishimoto, U. (1987) Effects of divalent cations on the excitability and on the cytoplasmic streaming of Chara corallina. Plant Cell Physiol. 28, 741–751

    Google Scholar 

  • Vanselow, K.H., Hansen, U.-P. (1989) Rapid effect of light on K+-channel in the plasmalemma of Nitella. J. Membr. Biol. 110, 175–187

    Google Scholar 

  • Vanselow, K.H., Dau, H., Hansen, U.-P. (1988) Indication of transthylakoid proton-fluxes in Aegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering. Planta 176, 351–361

    Google Scholar 

  • Vanselow, K.H., Kolbowski, J., Hansen, U.-P. (1989a) Further evidence for the relationship between light-induced changes of plasmalemma transport and transthylakoid proton uptake. J. Exp. Bot. 40, 239–245

    Google Scholar 

  • Vanselow, K.H., Kolbowski, J., Hansen, U.-P. (1989b) Analysis of chlorophyll fluorencence by means of noisy light. J. Exp. Bot. 40, 247–256

    Google Scholar 

  • Virgin, H.J. (1950) A localized effect of light on the protoplasmic viscosity of plant cells. Nature 166, 485–485

    Google Scholar 

  • Virgin, H.J. (1951) The effect of light on the protoplasmic viscosity. Physiol. Plant. 4, 253–257

    Google Scholar 

  • Weisenseel, M.H. (1986) Uptake and release of Ca2+ in the green algae Mougeotia and Mesotaenium. In: Molecular and cellular aspects of calcium in plant development (NATO ASI Series, Series A: Life Sciences 104) pp. 193–199, Trewavas, A.J., ed. Plenum Press, New York

    Google Scholar 

  • Weisenseel, M.H., Ruppert, H.K. (1977) Phytochrome and calcium ions are involved in light-induced membrane depolarisation in Nitella. Planta 137, 225–229

    Google Scholar 

  • Williamson, R.E. (1975) Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci. 17, 655–668

    Google Scholar 

  • Williamson, R.E., Ashley, C.C. (1982) Free Ca2+ and cytoplasmic streaming in alga Chara. Nature 296, 647–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. The first author was granted a scholarship by the state of Schleswig-Holstein. We are indebted to Prof. Dr. G. Pfister for technical advice and helpful discussions and to Mrs. E. Götting for drawing the figures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plieth, C., Hansen, UP. Light dependence of protoplasmic streaming in Nitella flexilis L. as measured by means of laser-velocimetry. Planta 188, 332–339 (1992). https://doi.org/10.1007/BF00192799

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192799

Key words

Navigation