Skip to main content
Log in

Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra ‘noise’ suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, G.W., 1981. Achnanthes linkei and the origin of monoraphid diatoms. Bacillaria 4: 29–40.

    Google Scholar 

  • April, R.H. & D.M. Keller, 1992. Saponite and vermiculite in amygdales of the Granby basaltic tuff, Connecticut Valley. Clays and Clay Minerals 40.1: 22–31.

    Google Scholar 

  • Ashworth, A.C., V. Markgraf, & C. Villagran, 1991. Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. J. Quat. Sci. 6: 279–291.

    Google Scholar 

  • Barsch, D. & R. Mäusbacher, 1986. New data on the relief development of the South Shetland Islands, Antarctica. Interdisciplinary Science Review 11 (2): 211–218.

    Google Scholar 

  • Beger, H., 1927. Beiträge zur Ökologie und Soziologie der luftlebigen (atmosphytischen) Kieselalgen. Ber. Deutsch. Bot. Ges. 45: 385–407.

    Google Scholar 

  • Berglund, B.E. & M. Ralska-Jasiewiczowa, 1987. Pollen analysis and pollen diagrams. In Berglund, B.E. (ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chicester: 455–484.

    Google Scholar 

  • Berner, R.A., 1971. Principles of chemical sedimentology. McGraw-Hill, 240 pp.

  • Berner, R.A., 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortsch. Min. 59: 117–135.

    Google Scholar 

  • Bernhardt, H., J. Clasen & E.A. Nusch, 1970. Vergleichende Untersuchungen zur Ermittlung der Eutrophierungsvorgänge und ihrer Ursachen and Riveris-und Wahnbachtalsperre. Abschlussbericht 1968–1970. Forschungsvorhaben Wasser 3/68.

  • Birkenmajer, K., 1981. Raised marine features and glacial history in the vicinity of Arctowski Station, King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences, Serie Science de la Terre 29: 109–117.

    Google Scholar 

  • Birkenmajer, K., R. Ochyra, I.U. Olsson, & L. Stuchlik, L. Stuchlik, 1985. Mid-Holocene Radiocarbon-dated Peat at Admiralty Bay, King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences, Earth Sciences 33: 7–12.

    Google Scholar 

  • Björck, S., C. Sandgren, & R. Zale, 1991b. Late Holocene Tephrochronology of the Northern Antarctic Peninsula. Quat. Res. 36: 322–328.

    Google Scholar 

  • Björck, S., C. Hjort, O. Ingólfsson, & G. Skog, 1991d. Radiocarbon dates from the Antarctic Peninsula-problems and potential. In J.J. Lowe (ed.), Radiocarbon Dating: Recent Applications and Future Potential. Quaternary Proceedings 1, Quaternary Research Association. Cambridge: 55–65.

    Google Scholar 

  • Björck, S., H. Håkansson, R. Zale, W. Karlén, & B. Liedberg Jönsson, 1991a: A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic implications. Antarctic Science 3: 61–72.

    Google Scholar 

  • Björck, S., N. Malmer, C. Hjort, P. Sandgren, O. Ingólfsson, B. Wallén, R.I. Lewis Smith, & B. Liedberg Jönsson, 1991c. Stratigraphic and paleoclimatic studies of a 5500-year-old moss bank on elephant Island, Antarctica. Arctic and Alpine Research 23: 361–374.

    Google Scholar 

  • Blümel, D.W., R. Emmerman & W. Smykatz-Kloss, 1985. Vorkommen und Entstehung von trioktaedrischen Smektiten in den Basalten und Böden der König-Georg-Insel (S-Shetlands/West-Antarktis). Polarforschung 55,1: 33–48.

    Google Scholar 

  • Bock, W., 1963., Diatomeen extrem trockener Standorte. Nova Hedwigia 5: 199–247.

    Google Scholar 

  • Boström, K. 1967. Some pH-controlling Redox Reactions in Natural Waters. Advances in Chemistry Series 67: 286–311.

    Google Scholar 

  • Bourelley, P. & E. Manguin, 1954. Contribution à la flore algale d'eau douce des Iles Kerguelen. Mémoires de l'Institute Scientifique de Madagascar 5: 7–56.

    Google Scholar 

  • Brendemühl, J., 1950. Über die Verbreitung der Erddiatomeen. Arch. Mikrobiol. 14: 407–449.

    Google Scholar 

  • British Antarctic Survey, 1979. British Antarctic Territory, Geological Map. Series BAS 500, Sheet 2, Edition 1.

  • Brown, G., 1980. Associated Minerals. In Brindley, G.W. & Brown, G. (eds): Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London: 361–410.

    Google Scholar 

  • Brown, G. & G.W. Brindley, 1980. X-ray Diffraction Procedures for Clay Mineral Identification. In Brindley, G.W. & Brown, G. (eds): Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London: 305–359.

    Google Scholar 

  • Carlsson, G.W.F., 1913. Süsswasser-Algen aus der Antarktis, Süd-Georgien und der Falkland Inseln. Wiss. Ergebn. der Schwedischen Südpolar Exp. 1901–1903, 414: 1–94.

    Google Scholar 

  • Charles, D.F., 1985. Relationship between surface sediment diatom assemblages and lakewater characteristics in Adirondack Lakes. Ecology 66 (3): 994–1011.

    Google Scholar 

  • Chester, R. & M.J. Hughes, 1967. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249–262.

    Google Scholar 

  • Clapperton, C.M. & D.E. Sugden, 1980. Geomorphology of the St. Andrews Bay-Royal Bay area, South Georgia. British Antarctic Survey Miscellaneous Map Series, Sheet 1.

  • Cleve, P.T., 1894–95. Synopsis of the naviculoid diatoms. Kungl. Sv. Vet. Akad. Handl. I, 26: 1–194; II, 27: 1–219.

    Google Scholar 

  • Cleve-Euler, A., 1951–1955. Die Diatomeen von Schweden und Finnland. Kungl. Sv. Vet. Akad. Handl. 4, 2:1 (1951): 1–163; 3:3 (1952): 1–153; 4:1 (1953): 1–255; 4:5 (1953): 1–158; 5:4 (1955): 1–232.

    Google Scholar 

  • Cholnoky, B.J., 1968. Die Ökologie der Diatomeen in Binnengewässern. Lehre, 699 pp.

  • Curtis, C.D., M.L. Coleman & L.G. Love, 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochim. Cosmochim. Acta 50: 2321–2334.

    Google Scholar 

  • Digerfeldt, G., 1972. The Post-Glacial development of Lake Trummen. Regional vegetation history, water level changes and palaeolimology. Folia Limn. Scand. 16: 96 pp.

  • Digerfeldt, G., 1988. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas 17: 165–182.

    Google Scholar 

  • Drever, J.I., 1973. The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filtermembrane peel technique. Am. Miner. 58: 553–554.

    Google Scholar 

  • Engstrom, D.R. & H.E. Wright Jr, 1984. Chemical stratygraphy of lake sediments as a record of environmental change. In Haworth, E.Y. & J.W.G. Lund (eds): Lake Sediments and Environmental History. Leicester University Press: 11–68.

  • Engstrom, D.R., E.B. Swain & J. Kingston, 1985. A palaeolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments, and diatoms. Freshwat. Biol. 15: 261–288.

    Google Scholar 

  • Foged, N., 1980. Diatoms on Öland, Sweden. Bibliotheca Phycologica, 49: 1–98. Foged, N., 1982. Diatoms in Bornholm, Denmark. Bibliotheca Phycologica, 59: 1–175.

    Google Scholar 

  • Florin, M.-B., 1970. Late-glacial diatoms of Kirchner Marsh, S.E. Minnesota. Nova Hedwigia 31: 667–756.

    Google Scholar 

  • Garrels, R.M. & Ch.L. Christ, 1965. Solutions, Minerals and Equilibria. Harper & Row, N. Y. 450 pp.

    Google Scholar 

  • Håkansson, H., 1984. The recent diatom succession of Lake Havgårdssjön, South Sweden. In: Proceedings of the 7th Symposium in fossil and recent diatoms, Philadelphia 1982: 411–429.

  • Hansen, K., 1959. Sediments from Danish lakes. J. Sedim. Petrol. 29, 38–46.

    Google Scholar 

  • Hansson, L.-A. & H. Håkansson, 1992. Diatom community response along a productivity gradient of shallow Antarctic lakes. Polar Biol. 12: 463–468.

    Google Scholar 

  • Haworth, E.Y., 1976. Two Late Glacial (Late Devensian) diatom assemblage profiles from Northern Scotland. New Phyt. 77: 227–256.

    Google Scholar 

  • Hickman, M. & D. H. Vitt., 1973. The aerial epiphytic diatom flora of moss species from Subantarctic Campbell Island. Nova Hedwigia 24: 443–458.

    Google Scholar 

  • Hjort, C., O. Ingólfsson & S. Björck, 1992. The last major deglaciation in the Antarctic Peninsula region—A review of recent Swedish Quaternary research. In Y. Yoshida (ed.), Recent progress in Antarctic Earth Science. Terra Scientific Publishing Company; Tokyo: 000–000.

    Google Scholar 

  • Hobbs, G.J., 1968. The geology of the South Shetland Islands. IV. The geology of Livingston Island. British Antaretic Survey Scientific Reports 47: 1–34.

    Google Scholar 

  • Holm, E., 1984: Review of Alpha-Particle Spectrometric Measurements of Actinides. Int. J. Appl. Rad. and Isot. 35 (4): 285–290.

    Google Scholar 

  • Hustedt, F., 1930–66. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In: Rabenhorst's Kryptogamenflora von Deutschland, Österreich und der Schweiz, 7. Leipzig.

  • Hustedt, F., 1934. Die Diatomeenflora von Poggenpohls Moor bei Dötlingen in Oldenburg. Bremer Wiss. Ges. Abhandl. u. Vorträge Jg 8/9: 362–403. Hustedt, F., 1938/39. Systematische und ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra. Systematischer Teil (1938), Archiv. Hydrobiol. Suppl. 15: 130–506; Allgemeiner Teil (1938) Archiv Hydrobiol. Suppl. 15: 638–790; (1939) Suppl. 16: 1–155, 274–394.

    Google Scholar 

  • Hustedt, F., 1942. Diatomeen aus der Umgebung von Abisko in Schwedisch-Lappland. Arch. Hydrobiol. 39: 82–174.

    Google Scholar 

  • Hustedt, F., 1957. Dia Diatomeenflora des Flussystems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen, naturw. Verein Bremen 34 (3): 181–440.

    Google Scholar 

  • Ingólfsson, O., C. Hjort, S. Björck & R.I. Lewis Smith, 1992. Late Pleistocene and Holocene glacial history of James Ross Island, Antarctica. Boreas 21: 209–222.

    Google Scholar 

  • Jackson, M.L., 1975. Soil Chemical Analysis—Advanced Course. 2nd edition, 10th Printing. Published by the author, Madison, Wisc. 991 pp.

  • Janssens, J.A., 1990. Ecology of Peatland Bryophytes and Palaeoenvironmental Reconstruction of Peatlands using Fossil Bryophytes. Methods Manual, Update August 1990. Available from the author.

  • John, B.S., 1972. Evidence from the South Shetland Islands towards a glacial history of West Antarctica. In D.E. Sugden & R.J. Price (eds.), Polar Geomorphology, Institute of British Geographers, 75–92.

  • Johnsen, S.J., W. Dansgaard, H.B. Clausen & C.C. Langway, 1972. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235: 429–434.

    Google Scholar 

  • Jouzel, J., G. Raisbeck, J.P. Benoist, F. Yiou, C. Lorius, D. Raynaud, J.R. Petit, N.I. Barkov, Y.S. Korotkevitch & D. Kotlyakov, 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quat. Res. 31: 135–150.

    Google Scholar 

  • Jørstad, K., B. Salbu & E. Roaldset, 1982. Vertical distribution of trace elements in fresh water, saline water and sediments from Lake Rørholtfjorden, Norway. Chem. Geol. 36: 325–347.

    Google Scholar 

  • Kappen, L. & H. Straka, 1988. Pollen and spores transport into the Antarctic. Polar Biology 8: 173–180.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Süsswasserflora von Mitteleurope. Bacillariophyceae. 1 Teil. Naviculaeae. Stuttgart, New York. Gustav Fischer Verlag. 876 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Süsswasserflora von Mitteleurope. Baciallriophyceae. 2 Teil. Surirellaceae. Stuttgart, New York. Gustav Fischer Verlag. 596 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., Gerloff, J., Heynig, H. & Mollen hauer, D. (eds.): Süsswasserflora von Mitteleuropa. 576 pp.

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnantha-ceae. Kritische Ergänzungen zu Navicula (Sineolata) und Gomphonema. In Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (eds.): Süsswasserflora von Mitteleuropa. 576 pp.

  • Krasske, G., 1932. Beiträge zur Kenntnis der Diatomeenflora der Alpen. Nova Hedwigia 72: 92–134.

    Google Scholar 

  • Krasske, G., 1938. Beiträge zur Kenntnis der Diatomeenflora von Island und Spitzbergen. Arch. Hydrobiol. 33: 503–533.

    Google Scholar 

  • Krasske, G., 1939. Zur Kieselalgenflora Südchiles. Arch. Hydrobiol. (und Planktonkunde) 35: 349–468.

    Google Scholar 

  • Krausse, G.L., C.L. Schelske & C.O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwater Biology 13: 73–81.

    Google Scholar 

  • Krieger, W., 1933. Die Algen. In Hibzheimer, M. (ed.): Das Naturschutzgebiet Schildow Teil II, Neudamm und Berlin, 55–82.

  • Lange-Bertalot, H. & K. Krammer, 1989: Achnanthes, eine Monographie der Gattung mit Definition der Gattung Cocconeis und Nachträgen zu den Naviculaceae. Bibliotheca Diatomologica 18. 393 pp. J. Cramer, Berlin.

    Google Scholar 

  • Le Cohu, R. & Maillard, R. 1983. Les diatomées monoraphidées del Iles Kerguelen. Annales Limnologie 19: 143–167.

    Google Scholar 

  • Le Cohu, R. & Maillard, R. 1986. Diatomées monoraphidées del Iles Kerguelen (a l'exclusion des Monoraphidées). Annales Limnologie 22: 99–118.

    Google Scholar 

  • Lumsden, D.N., L.G. Shipe & R.V. Lloyd, 1989. Mineralogy and Mn geochemistry of laboratory-synthesized dolomite. Geochim. Cosmochim. Acta 53: 2325–2329.

    Google Scholar 

  • Lund, J.W.G., 1945–1946. Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. New Phytol. 44: 196–219, (1945); 45: 56–110, (1946).

    Google Scholar 

  • Markgraf, V. 1989. Palaeoclimates in Central and South America since 18,000 BP based on pollen and lake-level records. Quat. Sci. Rev. 8: 1–24.

    Google Scholar 

  • Markgraf, V. 1991. Late Pleistocene environmental and climatic evolution in southern America. Bamberger Geogr. Schr. 11: 271–281.

    Google Scholar 

  • Matthies, D., R. Mäusbacher & D. Storzer, 1990. Deception Island tephra: A stratigraphical marker for limnic and marine sediments in Bransfield Strait area. Zentralblatt für Geologie und Paläontologie, Teil 1: 153–165.

  • Mäusbacher, R. 1991. Die jungquartäre Relief-und Klimageschichte im Bereich der Fildeshalbinsel Sud-Shetland-Inseln, Antarktis. Heidelberger Geographische Arbeiten, Heft 89: 207 pp.

  • Mäusbacher, R., J. Müller, M. Münnich & R. Schmidt, 1989. Evolution of postglacial sedimentation in Antarctic lakes (King George Island). Zeitschrift für Geomorphologie N. F. 33: 219–234.

    Google Scholar 

  • McEwan, D.M.C. & M.J. Wilson, 1980. Interlayer and Intercalation Complexes of Clay Minerals. In Brindley, G.W. & Brown, G. (eds): Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London: 197–248.

    Google Scholar 

  • Newman, A.C.D. & G. Brown, 1987. The chemical constitution of clays. In Newman, A.C.D. (ed.): Chemistry of clays and clay minerals. Mineral. Soc. Mon. No. 6. Longman Scientific & Technical: 1–128.

  • Oppenheim, D.R., 1990. A preliminary study of benthic diatoms in contrasting lake environments. In Kerry, K.R. & Hempel, G. (eds). Antarctic Ecosystems. Ecological Change and Conservation. Springer Verlag, Berlin: 91–99.

    Google Scholar 

  • Oppenheim, D.R. & R. Greenwood, 1990. Epiphytic diatoms in two freshwater maritime Antarctic lakes. Freshwater Biology 24: 303–314.

    Google Scholar 

  • Oppenheim, D. & C. Ellis-Evans, 1989. Depth related changes in benthic diatom assemblages of a maritime Antarctic lake. Polar Biol. 9: 525–532.

    Google Scholar 

  • Orvig, S., 1970. World Survey of Climatology Volume 14. Climates of the Polar Regions. Elsevier, Amsterdam-London-New York.

    Google Scholar 

  • Pankow, H., D. Haendel, W. Richter & U. Wand., 1987. Algologische Beobachtun gen in der Schirmacher-und Unterseeoase (Dronning-Maud-Land, East Antarctica). Arch. Protistenkunde 134: 59–82.

    Google Scholar 

  • Patrick R. & C.W. Reimer, 1966. The diatoms of the United States. Monographs of the Acad. Nat. Sci. Philadelphia, vol. 1. Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. 688 pp.

  • Patrick, R. & C.W. Reimer, 1972. The diatoms of the United States. Monograph of the Acad. Nat. Sci. Philadelphia vol. 2. Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae, 213 pp.

  • Pennington, W., 1978. Responses of some British lakes to past changes in land use on their catchments. Verh. Internat. Verein. Limnol. 20: 636–641.

    Google Scholar 

  • Petersen, J. Boye, 1928. The aerial algae of Iceland. The Botany of Iceland 2: 325–447.

    Google Scholar 

  • Petersen, J. Boye, 1935. Studies on the biology and taxonomy of soil algae. Dansk Bot. Arkiv 8, 183 pp.

  • Raisbeck, G.M., F. Yiou, D. Bourles, C. Lorius, J. Jouzel & N. Barkov, 1987. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326: 273–277.

    Google Scholar 

  • Renberg, I., 1976. Paleolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–159.

    Google Scholar 

  • Roos, P., E. Holm & R.B.R. Persson, A. Aarkrog, & S.P. Nielsen, 1992. Flux of 210Pb, 137Cs, 239+240Pu, and 241Am in the Antarctic Peninsula area. Science of the Total Environment, in press.

  • Round, F.E., 1957. Studies on bottom-living algae in some lakes of the English Lake district. J. Ecol. 45: 133–148.

    Google Scholar 

  • Round, F.E., 1965. The epipsammon: a relatively unknown freshwater algal association. Br. phycol. Bull. 2(6): 456–462.

    Google Scholar 

  • Round, F.E., 1968. Biologie der Algen. 315 pp. Stuttgart.

  • Round, F.E., R.M. Crawford & D.G. Mann, 1990. The diatoms. Biology and morphology of the genera. Cambridge Univ. Press, Cambridge. 747 pp.

    Google Scholar 

  • Salden, N., 1978. Beiträge zur Ökologie der Diatomeen (Bacillariophyceae) des Süsswassers. Decheniana 22: 1–238.

    Google Scholar 

  • Schlüter, M., 1961. Zur Bedeutung der litoralen Diatomeen unserer Gewässer. Z. Fischerei 10 NF, 4/5: 351–359.

    Google Scholar 

  • Schmidt, R., R. Mäusbacher & J. Müller, 1990. Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). J. Paleolimn. 3: 55–74.

    Google Scholar 

  • Schuster, R.M., 1966. The Hepatiaceae and Anthocerotae of North America, east of the hundredth meridian. Vol. 1. 812 pp. Columbia Univ. Press.

  • Schwabe, G.H., 1970. Auf Surtsey Island im Sommer nachgearisene nicht marine Algen. Shriften des naturwiss. Vereins für Schleswig-Holstein, Sonderband Surtsey: 31–100.

  • Simonsen, R., 1962. Untersuchungen zur Systematik und Ökologie der Boden diatomeen der westlichen Ostsee. Internationale Revue der gesamten Hydrobiologie. Systematische Beihefte 1, 1–144.

    Google Scholar 

  • Stine, S. & M. Stine, 1990. A record from Lake Cardiel of climate change in southern South America. Nature 345: 705–708.

    Google Scholar 

  • Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta 43: 339–352.

    Google Scholar 

  • Sugden, D.E. & C.M. Clapperton, 1986. Glacial history of the Antarctic Peninsula and South Georgia. South African Journal of Science 82: 508–509.

    Google Scholar 

  • Tatur, A. & R. del Valle, 1986. Badania paleolimnologicne i geomorfologicne na wyspie krola jerzego-Antarktyka zachodnia (1984–1986). Preglad Geologiczny 11: 621–626.

    Google Scholar 

  • Ter Braak, C.J.F., 1988. CANOCO — a FORTRAN programme for canonical community ordination by [partial] [detrended][canonical] correspondence analysis, principal component analysis and redundancy analysis (version 2.1). Technical Report, LWA-88-02, 95 pp. Wageningen, Nerherlands.

  • Ter Braak, C.J.F. & I.C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317.

    Google Scholar 

  • Troian, F.I., H.C. Fensterseifer & M.A. Fontoura-Hansen, 1990. Difratometria de raios-x em rochas tufiticas das Peninsulas Fildes (Ilha Rei George) e Stansbury (Ilha Nelson), Shetland do Sul, Antarica. Serie Cientifica Instituto Antártico Chileno 40: 9–19.

    Google Scholar 

  • Van Heurck, H., 1908. Expedition Antartique Belge. Résultate du Voyage du S.Y. ‘Belgia’ en 1897–1899. Botanique, Diatomées, 129 pp. J.-E. Buschmann; Anvers.

    Google Scholar 

  • Warncke, E., 1980. Spring areas: ecology, vegetation, and comments on similarity coefficients applied to plant communities. Holarctic Ecology, vol. 3(4) DISS. 333 pp.

    Google Scholar 

  • Wasell, A. & Håkansson, H. 1992. Diatom stratigraphy in a lake on Horseshoe Island, Antarctica: a marine: brackishfresh water transition with comments on the systematics and ecology of the most common diatoms. Diatom Research 7: 157–194.

    Google Scholar 

  • Weaver, Ch. E., 1989. Clays, Muds, and Shales. Developments in Sedimentology 44. Elsevier, Amsterdam: 819 pp.

    Google Scholar 

  • Winkler, M.G., 1985. Diatom evidence of environmental changes in wetlands: Cape Cod National Seashore. Center for Climatic Research. Inst. for Env. Studies. Univ. of Madison, Madison.

    Google Scholar 

  • Zale, R. & W. Karlén, 1989. Lake sediment cores from the Antarctic Peninsula and surrounding islands. Geogr. Ann. 71A: 211–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björck, S., Håkansson, H., Olsson, S. et al. Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. J Paleolimnol 8, 233–272 (1993). https://doi.org/10.1007/BF00177858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177858

Key words

Navigation