Skip to main content
Log in

Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Twenty-four different strains of aerobic Gram-negative bacteria, mainly belonging to the genera Alcaligenes, Paracoccus, Pseudomonas and Methylobacterium, were examined with respect to their ability to utilize 4-hydroxyvaleric acid (4HV), 4-valerolactone (4VL) and 3-hydroxypropionic acid (3HP) as carbon sources for growth and for accumulation of polyhydroxyalkanoic acid (PHA). A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended for the detection of derivatives obtained from the methanolysis of 4-hydroxybutyric acid (4HB) and 4HV. Most of the Alcaligenes species and P. oxalaticus Ox1 accumulated a terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV) and 4HV as constituents from 4HV or 4VL as sole carbon sources in batch, fed-batch or two-stage fed-batch cultures. Poly(3HB-co-3HV-co-4HV) accumulated from 4HV by A. eutrophus strain NCIB 11599 amounted to approximately 50% of the cell dry matter and was composed of 42.0 mol % 3HB, 52.2 mol % 3HV and 5.6 mol % 4HV, respectively. Pseudomonads, which belong to the rRNA homology group I, were not able to incorporate 4HV. With 3HP as carbon source, the GC analysis provided evidence for the presence of 3HP in the PHA of many bacteria. Nuclear magnetic resonance spectroscopic analysis confirmed that, for example, A. eutrophus strain TF93 accumulated poly(3HB-co-3HP) with 98 mol % 3HB and 2 mol % 3HP if the cells were cultivated in the presence of 0.5% (w/v) 3HP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  Google Scholar 

  • Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871

    Google Scholar 

  • Bluhm TL, Hamer GK, Marchessault RH, Fyfe CA, Veregin RP (1986) Isodimorphism in bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2871–2876

    Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    Google Scholar 

  • De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    Google Scholar 

  • Doi Y, Kunioka MK, Nakamura Y, Soga K (1986) Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a co-polyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19:2860–2864

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635

    Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1990a) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111

    Google Scholar 

  • Doi Y, Segawa A, Nakamura S, Kunioka M (1990b) In: Dawes EA (ed) Novel biodegradable microbial polymers, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 37–48

    Google Scholar 

  • Don RA, Pemberton JM (1981) Properties of six pesticides degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    Google Scholar 

  • Eggink G, Wal H van der, Huyberts G (1990) In: Dawes EA (ed) Novel biodegradable microbial polymers, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 441–444

    Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990a) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91

    Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990b) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101

    Google Scholar 

  • Haywood GW, Anderson AJ, Dawes EA (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359

    Google Scholar 

  • Haywood GW, Anderson AJ, Williams DR, Dawes EA (1991) The accumulation of a polyhydroxyalkanoate copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    Google Scholar 

  • Hilger U, Sattler K, Littkowsky U (1991) Untersuchungen zur Wachstumsassoziierten Akkumulation von Poly-β-hydroxybuttersäure bei Methylobacterium rhodesianum Z. Zentralbl Mikrobiol 146:83–88

    Google Scholar 

  • Holmes PA (1985) Applications of PHB — a microbially produced biodegradable thermoplastic. Phys Technol 16:32–36

    Google Scholar 

  • Holmes PA, Wright LF, Collins SH (1982) β-Hydroxybutyrate polymers. European patent application no. EP 52,459

  • Kunioka M, Nakamura Y, Doi Y (1988) New bacteriol copolyesters produced in Alcaligenes eutrophus from organic acids. Polymer Commun 29:174–176

    CAS  Google Scholar 

  • Lagaveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    Google Scholar 

  • Lemoigne M (1926) Produits de déshydration et de polymerisation de l'acide β-oxybutyrique. Bull Soc Chim Biol (Paris) 8:770–782

    Google Scholar 

  • Lenz RW, Kim BW, Ulmer HW, Fritzsche K (1990) In: Dawes EA (ed) Novel biodegradable microbial polymers, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 23–35

    Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421

    Google Scholar 

  • Nakamura S, Kunioka M, Doi Y (1991) Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromol Rep in press

  • Reynolds WF, Hughes DW, Perpick-Dumont M (1985) A pulse sequence which provides rapid, routine 1H-13C shift-correlated spectra. J Magnet Reson 64:304–311

    Google Scholar 

  • Scherf U, Buckel W (1991) Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum. Appl Environ Microbiol 57:2699–2702

    Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    CAS  PubMed  Google Scholar 

  • Schwien U, Schmidt E (1982) Improved degradation of monochlorophenols by a constructed strain. Appl Environ Microbiol 44:33–39

    Google Scholar 

  • Steinbüchel A (1989) Poly(hydroxyfettsäuren) — Speicherstoffe von Bakterien: Biosynthese und Genetik. Forum Mikrobiol 12:190–198

    Google Scholar 

  • Steinbüchel A (1991a) Recent advances in the knowledge of bacterial poly(hydroxyalkanoic acid) metabolism and potential impacts on the production of biodegradable thermoplastics. Acta Biotechnol in press

  • Steinbüchel A (1991b) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials, 1st edn. Macmillan Press Reference Books, London, in press

    Google Scholar 

  • Steinbüchel A (1991c) Polyhydroxyfettsäuren — thermoplastisch verformbare Polyester aus Bakterien. Nach Chem Tech Labor 39:1112–1124

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    Google Scholar 

  • Uhlig H, Karbaum K, Steudel A (1986) Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int J Syst Bacteriol 36: 317–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: A. Steinbüchel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentin, H.E., Schönebaum, A. & Steinbüchel, A. Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 36, 507–514 (1992). https://doi.org/10.1007/BF00170193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170193

Keywords

Navigation