Skip to main content
Log in

New aspects of submerged fermentation of Claviceps paspali

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Submerged fermentation of Claviceps paspali strain MG-6 was studied with regard to the fate of individual alkaloids in the course of fermentation. Based on liquid-chromatographic data the process can be divided into three phases. The production phase (fermentation days 3–12) is characterized by biosynthesis of the basic genuine alkaloid, lysergic acid alpha-hydroxyethylamide (LAH I). In view of its low stability it becomes epimerized on two asymmetric carbon atoms in the fermentation medium, yielding three other epimers (LAH II–IV). The degradation phase (days 13–18) involves cleavage of LAH I–IV resulting in ergine and erginine. In the post-production phase (days 15–30) the alkaloids succumb to biooxidative reactions that yield mostly 8-hydroxy-derivatives of ergine and erginine. Isolation of paspalic acid 10-hydroxyamide signifies the existence of an alternative biosynthetic pathway for production of simple lysergic acid derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAH I:

lysergic acid alpha-hydroxyethylamide;

LAH II:

lysergic acid Cα-epihydroxyethylamide

LAH III:

isolysergic acid alpha-hydroxyethylamide

LAH IV:

isolysergic acid cα-epihydroxyethylamide

PAH:

paspalic acid alpha-hydroxyethylamide

s:

singlet

d:

doublet

t:

triplet

q:

quartet

dd:

double of doublets

mt:

multiplet

dmt:

double of multiplets

br mt:

broad multiplet

J:

interaction constant

TMS:

tetramethyl silane

References

  • Flieger M, Sedmera P, Vokoun J, Řičicová A, Řeháček Z (1982) Separation of four isomers of lysergic acid α-hydroxyethylamide by liquid chromatography and their spectroscopic identification. J Chromatogr 236:453–459.

    Google Scholar 

  • Flieger M, Linhartová R, Sedmera P, Zima J, Sajdl P, Stuchlík J, Cvak L (1989a) New alkaloids of Claviceps paspali. J Nat Prod (Lloydia) 52:1003–1008.

    Google Scholar 

  • Flieger M, Zelenková NF, Sedmera P, Křen V, Novák J, Rylko V, Sajdl P, Řeháček Z (1989b) Ergot alkaloids glycosides from saprophytic cultures of Claviceps I. Elymoclavine fructosides. J Nat Prod (Lloydia) 52:506–510.

    Google Scholar 

  • Flieger M, Křen V, Zelenková NF, Sedmera P, Novák J, Sajdl P (1990) Ergot alkaloids glycosides from saprophytic cultures of Claviceps. II. Chanoclavine fructosides. J Nat Prod (Lloydia) 53:171–175.

    Google Scholar 

  • Floss HG, Günter H, Mothes U, Becker I (1967) Isolierung von Elymoclavine-O-β-fruktosid aus Kulturen des Mutterkornpilzes. Z Naturforsch 22b:399–402.

    Google Scholar 

  • Gabero-Porekar V, Didek-Brumec M, Sočič H (1983) Direct selection of active claviceps colonies on agar plates. Z Allg Microbiol 23:95–98.

    Google Scholar 

  • Gabero-Porekar V, Sočič H, Pertot E (1987) Metabolic changes in a conidia-induced Claviceps paspali strain during submerged fermentation. Can J Microbiol 33:602–606.

    Google Scholar 

  • Johansson M (1964) Growth and alkaloid production by Claviceps paspali (Fr.) Tul. IV. Some metabolic changes caused by oxide. Physiol Plant 17:547–559.

    Google Scholar 

  • Kobel H, Schreier E, Rutschmann J (1964) 6-Methyl-Δ8,9-ergolen-8-carbonsäure, ein neues Ergolin-Derivat aus Kulturen eines Stammes von Claviceps paspali Stevens et Hall. Helv Chim Acta 47:1052–1064.

    Google Scholar 

  • Krajíček A, Trtík B, Spáčil J, Sedmera P, Vokoun J, Řeháček Z (1979) 8-Hydroxyergotamine, a new ergot alkaloid. Collect Czech Chem Commun 44:2255–2260.

    Google Scholar 

  • Lin WNCH, Ramstad E (1967) Enzymology of ergot alkaloid biosynthesis. Part III. 10-Hydroxyelymoclavine, an intermediate in the peroxidase conversion of elymoclavine to penniclavine and isopenniclavine. Lloydia 30:202–208.

    Google Scholar 

  • Mary NY, Kelleher J, Schwarting AE (1965) Production of lysergic acid derivatives in submerged culture. III. Strain selection on defined media. Lloydia 28:218–229.

    Google Scholar 

  • Pertot E, Čadež J, Miličič S, Sočič H (1984) The effect of citric acid concentration and pH on the submerged production of lysergic acid derivatives. Appl Microbiol Biotechnol 20:29–32.

    Google Scholar 

  • Řičicová A, Flieger M, Řeháček Z (1982) Quantitative changes of the alkaloid complex in a submerged cultures of Claviceps paspali. Folia Microbiol 27:433–435.

    Google Scholar 

  • Robbers LE, Robertson LW, Hornemann KM, Jindra A, Floss HG (1972) Physiological studies on ergot: further studies on the induction of alkaloid synthesis by tryptophan and its inhibition by phosphate. J Bacteriol 112:791–796.

    Google Scholar 

  • Rylko V, Linhartová R, Sajdl P, Řeháček Z (1988) Formation of conidia in a saprophytic strain Claviceps paspali MG-6 producting simple lysergic acid derivatives. Folia Microbiol 33:425–429.

    Google Scholar 

  • Taylor EH, Shough HR (1967) Enzymology of ergot alkaloid biosynthesis. Part II. The oxidation of agroclavine by horseradish peroxidase. Lloydia 30:197–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: R. Bumbová-Linhartová

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumbová-Linhartová, R., Flieger, M., Sedmera, P. et al. New aspects of submerged fermentation of Claviceps paspali . Appl Microbiol Biotechnol 34, 703–706 (1991). https://doi.org/10.1007/BF00169337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169337

Keywords

Navigation